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ABSTRACT
The grid vision of a single computing utility has yet to mate-
rialize: while many grids with thousands of processors each
exist, most work in isolation. An important obstacle for the
effective and efficient inter-operation of grids is the problem
of resource selection. In this paper we propose a solution
to this problem that combines the hierarchical and decen-
tralized approaches for interconnecting grids. In our solu-
tion, a hierarchy of grid sites is augmented with peer-to-
peer connections between sites under the same administra-
tive control. To operate this architecture, we employ the key
concept of delegated matchmaking, which temporarily binds
resources from remote sites to the local environment. With
trace-based simulations we evaluate our solution under var-
ious infrastructural and load conditions, and we show that
it outperforms other approaches to inter-operating grids.
Specifically, we show that delegated matchmaking achieves
up to 60% more goodput and completes 26% more jobs than
its best alternative.

1. INTRODUCTION
In the mid-1990s, the vision of the grid as a comput-

ing utility was formulated [14]. Since then, hundreds of
grids have been built—in different countries, for different
sciences, and both for production work and for computer-
science research—but most of these grids work in isolation.
So, the next natural step is to have multiple grids inter-
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operate in order to serve much larger and more diverse com-
munities of scientists and to put the ensemble of resources
of these grids to better use. However, grid inter-operation
raises serious challenges in the areas of, among others, re-
source management and performance. In this paper we ad-
dress these two challenges with the design and evaluation of
a delegated matchmaking protocol for resource selection and
load balancing in inter-operating grids.

Our work was motivated by the ongoing efforts for mak-
ing two multi-cluster grids, the DAS [10] and Grid’5000 [7],
inter-operate. Much like similar grid systems, e.g., CERN’s
LCG, their resources are in general under-utilized, yet in few
occasions the demand exceeds the capacity of the individual
systems. In such occasions, two (undesirable) alternatives
are to queue the extra demand until it can be served, and
to enlarge the individual systems. A third, and potentially
more desirable option is to inter-operate grids, so that their
collective demand will ideally incur a rather stable, medium-
to-high utilization of the combined system.

The decision to inter-operate grids leads to non-trivial de-
sign choices with respect to resource selection and perfor-
mance. If there is no common resource management system,
jobs must be specifically submitted to one of the grids, which
may lead to poor load balancing. If a central meta-scheduler
is installed, it will quickly become a bottleneck leading to
unnecessarily low system utilization, it will be a single point
of failure leading to break-downs of the combined system,
and it is unclear who will physically manage the central-
ized scheduler. Traditional decentralized solutions can also
be impractical. Hierarchical mechanisms (still centralized,
but arguably with less demand per hierarchy node) can be
efficient and controllable, but still have single points of fail-
ure, and are administratively impractical (i.e., who admin-
isters the root of the hierarchy?). Completely decentralized
systems can be scalable and fault-tolerant, but they can be
much less efficient than their hierarchical alternatives. While
many solutions have already been proposed [4, 6, 8, 21, 22,
23, 24], none has so far managed to achieve acceptance in
the grid world, in part because they have yet to prove that
they can yield significant benefits when managing typical
grid workloads.

In this paper, we investigate a decentralized architecture
for grid inter-operation that is based on two key ideas. First,
we leverage a hierarchical architecture in which nodes rep-
resent computing sites, and in which we allow the nodes at
the same hierarchical level and operating under the same
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Figure 1: The logical structure of the dual-grid system composed of (a) the DAS, and (b) Grid’5000. Leaves
in this structure represent actual clusters of resources. Nodes labelled 20 through 30 are administrative-only

authority (parent) to form a completely decentralized net-
work. In this way, we attempt to combine the efficiency and
the control of traditional hierarchical architectures with the
scalability and the reliability of completely decentralized ap-
proaches. Second, we operate this architecture through del-
egated matchmaking in which requests for resources are dele-
gated up-and-down the hierarchy, and within the completely
decentralized networks. When resource request matches are
found, the matched resources are delegated from the re-
source owner to the resource requester. By delegating re-
sources to jobs instead of the traditional migration of jobs
to resources, we lower the administrative overhead of man-
aging user/group accounts on each site where they can use
resources. Our architecture can be used as an addition to
existing (local) resource managers.

We assess the performance of our architecture, and com-
pare it against five architectural alternatives. Our experi-
ments use a simulated system with 20 clusters and over 3000
resources. The workloads used throughout the experiments
are either real long-term grid traces, or synthetic traces that
reflect the properties of grid workloads. Our study shows
that:

1. Our architecture achieves a good load balance for any
system load, and in particular for high system loads.

2. Our architecture achieves a significant increase in good-
put [5] and a reduction of the average job wait time,
when compared to centralized and decentralized ap-
proaches. Furthermore, when facing severe imbalance
between the loads of the system’s composing grids, our
architecture achieves a much better performance than
its alternatives, while keeping most of the traffic in the
originating grids.

3. The overhead of our architecture, expressed in number
of messages, remains low, even for high system loads.

The remainder of the paper is structured as follows. In
Section 2 we formulate the scenario that motivates this work:
inter-operating the DAS and Grid’5000 grids. In Section 3
we survey briefly the architectural and the operational spec-
tra of meta-scheduling systems. We illustrate our survey
with a selection of real systems. In Section 4 we introduce
our architecture for inter-operating grids. We assess the per-
formance of our architecture, and that of five architectural
alternatives, in Section 5. Last but not least, in Section 6
we present our conclusions, and hint towards future work.

2. THE MOTIVATING SCENARIO: INTER-
OPERATING THE DAS AND GRID’5000

We consider as a motivating scenario the inter-operation
of two grid environments, the DAS [10] and Grid’5000 [7].

2.1 The Dual-Grid System: Structure and Goals
The DAS environment (see Figure 1a) is a wide-area dis-

tributed system consisting of 400 processors located at five
Dutch Universities (the cluster sizes range from 64 to 144).
The users, a scientific community sized around 300, are asso-
ciated with a home cluster, but a grid infrastructure grants
DAS users access to any of the clusters. Each cluster is
managed by an independent local cluster manager. The
cluster owners may decide to partially or to completely take
away the cluster resources, for limited periods of time. The
DAS workload comprises a large variety of applications, from
single-CPU jobs to parallel jobs that may span across clus-
ters. Jobs can arrive directly at the local clusters managers,
or to the Koala meta-scheduler [21].

The Grid’5000 environment (see Figure 1b) is an exper-
imental grid platform consisting of 9 sites, geographically
distributed in France. Each site comprises one or several
clusters, for a total of 15 clusters and over 2750 processors
inside Grid’5000. The users, a community of over 600 sci-
entists, are associated with a site, and have access to any of
the Grid’5000 resources through a grid infrastructure. Each
individual site is managed by an independent local cluster
manager, the OAR [6], which has advance reservation ca-
pabilities. The other system characteristics, e.g., the cluster
ownership and the workload, are similar to those of the DAS.

The combined environment that is formed by inter-operating
the DAS and Grid’5000 comprises 20 clusters, and over 3000
processors. The goal of this combined environment is to in-
crease the performance–reduce the job slowdown, even in a
highly utilized system. The performance should be higher
than that of the individual systems, taken separately. How-
ever, in achieving this goal we have to ensure that:

1. The load is kept local as much as possible, that is, jobs
submitted in one grid should not burden the other if
this can be avoided (the ”keep the load local” policy).

2. The inter-connection should not require that each user,
or even that each group, should have an account on
each cluster they wish to use.

3. The clusters should continue running their existing re-
source management systems.

2.2 Load Imbalance in Grids
A fundamental premise of our delegated matchmaking ar-

chitecture is that there exists load imbalance between differ-
ent parts of the dual-grid system. We show in this section
that this imbalance actually exists.

We want to assess the imbalance between the loads of in-
dividual clusters. To this end, we analyze two long-term and
complete traces of the DAS and of the Grid’5000 systems,
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Figure 2: Load imbalance between clusters of the same grid. (a) and (b) the cumulative normalized daily
load of the clusters in the DAS and Grid’5000 systems over time.; (c) and (d) the hourly load of the clusters
in the DAS and Grid’5000 systems over time. Higher imbalance is denoted by more space between curves.

taken from the Grid Workloads Archive (GWA) [1]: traces
GWA-T-1 and GWA-T-2, respectively. The traces, sized re-
spectively over 1,000,000 and over 750,000 jobs, contain for
each job information about the cluster of arrival, the arrival
time, the duration, the number of processors, etc.

We define the normalized daily load of a cluster as the
number of job arrivals over a day divided by the number
of processors in the cluster during that period. We define
the hourly load of a cluster as the number of job arrivals
during hourly intervals. We distinguish two types of im-
balance between the cluster loads, overall and temporary.
We define the overall imbalance between two clusters over a
period of time as the ratio between their normalized daily
loads cumulated until the end of the period. We define the
temporary imbalance between two clusters over a period of
time as the maximum value of the ratio between the hourly
loads of the two clusters, computed for each hour in the time
period. The overall imbalance characterizes the load imbal-
ance over a large period of time, while accounting for the
differences in cluster size. The temporary imbalance char-
acterizes the load imbalance over relatively short periods of
time, regardless of the cluster sizes.

Figure 2(a) shows the cumulative normalized daily load
of the DAS system, over a year, from 2005-03-20 to 2006-
03-21. The right-most value indicates the average number
of jobs served by each single processor during this period.

The maximum overall load imbalance between the clusters
of the DAS system is above 3:1. Figure 2(c) shows the hourly
load of the DAS system, over a week, starting from 2005-
06-01. During the interval 2pm-3pm, 2005-06-04, there are
over a thousand jobs arriving at cluster 2 and only one at
cluster 5. The maximum temporary load imbalance between
the clusters of the DAS system is over 1000:1. We have
obtained similar results for the Grid’5000 traces, as shown
by Figures 2(b) and 2(d).

We conclude that there exists a great potential to re-
duce the delays through load balancing across DAS and
Grid’5000.

3. A BRIEF REVIEW OF METASCHEDUL-
ING SYSTEMS

In this section we review several meta-scheduling systems,
from an architectural and from an operational point of view,
and for each we give a concise description and a reference to
a real system.

3.1 Architectural Spectrum
We consider a multi-cluster grid. Below we briefly present

our taxonomy of architectures that can be used as grid re-
source management systems (GRMS). We illustrate this tax-
onomy in Figure 3.
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Figure 3: The meta-scheduling architectures: (a) in-
dependent clusters; (b) centralized meta-scheduler,
(c) hierarchical K-level meta-scheduler; (d) distrib-
uted meta-scheduler with static links.

Independent clusters: (included for completeness) each
cluster has its local resource management system (LRMS),
i.e., there is no meta-scheduler. Users have accounts
on each of the clusters they want to submit jobs to.
For each job, users are faced with the task of selecting
the destination cluster, typically a cumbersome and
error-prone process.

Centralized meta-scheduler: there exists one (central)
system queue, where all grid jobs arrive. From the cen-
tral queue, jobs are routed towards the clusters where
they are dispatched. The clusters may optionally em-
ploy an LRMS, in which case jobs may also arrive lo-
cally. It may be possible for the manager of the central
queue to migrate load from one LRMS to another.

Hierarchical K-Level meta-scheduler: there exists a hi-
erarchy of schedulers. Typically, grid jobs arrive either
at the root of the hierarchy, or at the clusters’ LRMSs.
In both cases, jobs are routed (migrated) towards the
clusters’ LRMSs. The Hierarchical 2-Level metasched-
uler is the most encountered variant [22, 8] .

Distributed meta-scheduler: similarly to the indepen-
dent clusters architecture, each cluster has its LRMS,
and jobs arrive at the individual clusters’ LRMSs. In
addition, cluster schedulers can share jobs between
each other. This forms in effect a distributed meta-
scheduler. We distinguish between two ways of estab-
lishing links between clusters (sharing): static (fixed
by administrator, e.g., at system start-up), and dy-
namic (automatically selected). We also call a dis-
tributed meta-scheduler architecture with static link
establishment a federated clusters architecture.

Hybrid distributed/hierarchical meta-scheduler: each
grid site, which may contain one or several clusters, is
managed by a hierarchical K-Level meta-scheduler. In
addition, the root meta-schedulers can share the load
between each other. Other load-sharing links can also
be established.

System Architecture Operation
Condor [26] Independent Matchmaking
Globus GRAM [9] Independent Job routing
Alien [23] Centralized Job pull
Koala [21] Centralized Job routing
OAR(Grid) [6] Centralized Job routing
CCS [22] Hierarchical 2-Level Job routing
Moab/Torque [8] Hierarchical 2/3-Level Job routing
NorduGrid ARC [11] Indep./Federated Job routing
NWIRE [24] Federated Job routing
Condor flocking [12] Federated Matchmaking
OurGrid [4] Distributed, dynamic Job routing
Askalon [25] Distributed, dynamic Job routing

Table 1: Currently deployed meta-scheduling sys-
tems. This work proposes a hybrid distrib-
uted/hierarchical architecture, operated through
MatchMaking.

3.2 Operational Spectrum
We define an operational model as the mechanism that

ensures that jobs entering the system arrive at the place
where they can be run. We identify below three operational
models employed by today’s resource management systems.

Job routing: jobs are routed by the schedulers from the ar-
rival point to the resources where they can run through
a push operation (scheduler-initiated routing).

Job pulling: jobs are acquired by (unoccupied) resources
from a higher-level scheduler through a pull operation
(resource-initiated routing).

MatchMaking: jobs and resources are connected to each
other by the resource manager, which thus acts as a
broker responding to requests from both sides (job-
and resource-initiated routing).

3.3 Real Systems
There exist several resource management systems that can

operate a multi-cluster grid. Below we present a selection,
which we summarize in Table 1, including references.

The Globus GRAM is a well-known middleware for man-
aging independent clusters environments. It is operated
through job routing. Globus GRAM is used in research and
in industrial grids.

The Alien, Koala, and OARGrid architectures are all cen-
tralized. Alien is used in (a part of) CERN’s production
grid, and is operated through job pull. Koala and OARGrid
are used in research grids, and are operated through job
push. They are some of the first meta-schedulers which can
co-allocate jobs, that is, they can simultaneously allocate
resources located in different clusters for the same job.

CCS and Moab/Torque are both hierarchical meta-schedulers.
CCS is one of the first hierarchical meta-schedulers that can
operate clusters and super-computers together; it was used
mainly in research environments. The commercial package
Moab/Torque is currently one of the most used resource
management systems.

The NorduGrid ARC implements an independent clusters
architecture operated through job routing. However, the
job submission process contacts cluster information systems
from a fixed list, and routes jobs to the site where they could
be started the fastest. This effectively makes NorduGrid a
federated clusters architecture.

NWIRE, OurGrid, and Askalon are all distributed clus-
ters architectures operated through job routing. NWIRE
and OurGrid implement a federated clusters architecture.



NWIRE is the first such architecture to explore economic,
negotiation-based interaction between clusters. OurGrid is
the first to use a ”tit-for-tat”job migration protocol, in which
a destination site prioritizes migrated load by the number
of jobs that it has migrated in the reverse direction in the
past. Finally, Askalon is the first to build a negotiation-
based distributed clusters architecture with dynamic link
establishment.

Condor is a cluster management system. As such, it can
straightforwardly be used in an independent clusters envi-
ronment. However, through its flocking mechanism, Condor
can be used in a federated clusters environment. In both
cases, Condor operates through MatchMaking. Condor is
widely used in research and production clusters.

4. THE DELEGATED MATCHMAKING AR-
CHITECTURE

In this section we present our resource management archi-
tecture for inter-operating multi-cluster grids: the delegated
matchmaking architecture (DMM). We first build a hybrid dis-
tributed/hierarchical meta-scheduler architecture (see Sec-
tion 3.1). Then, we operate it using (delegated) matchmak-
ing (see Section 3.2).

4.1 Overview
We now define how grid clusters and other administrative

units, from hereon sites, are connected. We aim to create
a network of sites that manage the available resources, on
top of and independently of the local cluster resource man-
agers.First, sites are added according to administrative and
political agreements, and parent-child (hierarchical) links
are established. Thus, a hierarchy of sites is formed, in which
the individual grid clusters are leaves of the hierarchical tree.
Then, supplementary to the hierarchical links, sibling links
can be formed between sites at the same hierarchical level
and operating under the same authority (parent site).

Each site administers directly its local resources and the
workloads of its local users. However, a site may have no
local resources, or no local users, or both. A site with no
local resources can be installed for a research laboratory
with no local computing resources. A site without local
users can be installed for an on-demand computing center.
A site without users or resources serves only administrative
purposes.

For our motivating scenario, described in Section 2, we
create the hierarchical links between the sites as in Fig-
ure 1. Additionally, the sites 0-4, 5-8, 11-12, 13-14, 15-16,
22-30, and 20-21 are also inter-connected with sibling links,
respectively. Sites 20 through 30 have been installed for ad-
ministrative purposes. To avoid ownership and maintenance
problems, there is in fact no root of the hierarchical tree. In-
stead, sites 20 and 21 serve as roots for each of the two grids,
and are connected through a sibling link.

We operate our architecture through (delegated) match-
making. The main idea of our delegated matchmaking mech-
anism is to delegate resources’ ownership to the user that
requested them through a chain of sites (and of resource
leases), and by adding the resource transparently for the user
to the local user’s site. Binding the resource to the local
user’s site stands in contrast to the typical practice in to-
day’s systems based on either job routing or job pull, where
jobs are sent to (or acquired from) the remote resources,

where they are executed. This major change can be benefi-
cial in practice: the resources are added to the trusted pool
of resources of a neighboring site (simplifies security issues),
and current systems already provide adequate mechanisms
(e.g., the Condor glide-in [26]) that allow resources to be
dynamically and temporarily added to a site without the
need of root access to the resource (simplifies technical is-
sues). On the contrary, when delegating jobs to resources,
the resource management system needs to understand the
job’s semantics, and in particular the file dependencies, the
job’s structure, and the job-to-resource mapping strategy.

4.2 Local Operation
We assume that each of the grid’s clusters uses a Condor-

like resource management system. This assumption allows
us to consider in our architecture only the mechanisms by
which the clusters are inter-operated, while benefiting from
the local resource management features of Condor [26]: com-
plete administrative control over owned resources (resources
can reject jobs), high tolerance to resource failures, the abil-
ity to dynamically add/remove computing resources (through
matchmaking and glide-in). This also ensures that the ad-
ministrators of the grid clusters will understand easily our
architecture as it uses concepts from the Condor world, such
as matchmaking.

Similarly to Condor, in our architecture each cluster is
managed by a site manager (SM), which is responsible for
gathering information about the local resources and jobs,
informing resources about their match with a job and vice-
versa, and maintaining the resource leasing information. Ac-
cording to this definition, our SM is equivalent to Condor’s
Negotiator, Collector, and Accountant components combined.
Each resource is managed by a resource manager (RM),
which will mainly be occupied with starting and running
user’s jobs. Each user has (at least) one permanent job
manager (JM), which acts as an application-centric sched-
uler that obtains resources from the local SM. Our RM and
JM definitions correspond to those of Condor’s Start and
Sched daemons, respectively. In addition to the Condor-
specific functions, in our architecture a site manager is also
responsible for communicating with other site managers.

4.3 The Delegated MatchMaking Mechanism
We now present the operational mechanism of our archi-

tecture, the delegated matchmaking mechanism, for obtain-
ing remote resources. Job manager JM-1 informs its SM
about the need for resources, by sending a resource request
(Step 1 in Figure 4). The resource request includes the type
of and number of resources JM-1 requires. At its next del-
egation cycle, site manage SM-1 establishes that it cannot
serve locally this request, and decides to delegate it. SM-1
selects then contacts SM-2 for this delegation (Step 2). To
make the selection, SM-1 uses its target site ordering policy
(see Section 4.4). During its next matchmaking cycle, SM-
2 finds enough free resources, and delegates them to SM-1
through its local resource management protocol (Step 3).
Then, SM-1 claims the resources, and adds them to its lo-
cal environment (Step 4). At this point, a delegation chain
has been created, with SM-2 being the delegation source and
SM-1 the delegation sink. During its next delegation cycle,
SM-1 handles JM-1’s request using its own resource manage-
ment protocol (Step 5). Upon receiving the resources, JM-1
starts the user’s job(s) on RM-1 (Step 6). Finally, after the
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user job(s) have finished, JM-1 releases the resource, by in-
forming both RM-1 and SM-1 (Step 7). The resource release
information is transmitted backwards along the delegation
chain: SM-1 informs SM-2 of the resource release. If SM-2’s
local resource management is Condor-based, RM-1 will also
inform SM-2 of its release.

During Steps 1-7, several parties (e.g., JM-1, SM-1, SM-
2, and RM-1) are involved in a string of negotiations. The
main potential failures occurring in these multi-party ne-
gotiations are addressed as follows. First, an SM may not
find suitable resources, both locally or through delegation.
In this case, the SM sends back to the delegation requester
(another SM) a DelegationReject message. Upon receiv-
ing a DelegationReject message, an SM will attempt to se-
lect and contact another SM for delegation (restart from
Step 2 in Figure 4). Second, to prevent routing loops, and
for efficiency reasons, the delegation chains are limited to
a maximum length, which we call the delegation time-to-
live (DTTL). Before delegating a resource request, the SM
decreases its DTTL by 1. A resource request with a DTTL
equal to 0 cannot be delegated. To ensure that routing loops
do not occur, SMs retain a list of resource requests they have
seen during the past hour. Third, we account for the case
when the user changes his intentions, and cancels the re-
source request. In this case, JM-1 is still accountable for the
time during which the resource management was delegated
from SM-2 to SM-1, and charges the user for this time. To
prevent being charged, the user can select a reduced DTTL,
or even a DTTL of 0. However, requests with a DTTL of 0
will possibly wait more for available resources.

Delegated matchmaking promises to significantly improve
the performance of the system, by occupying otherwise un-
used free resources with waiting jobs (load balancing). How-
ever, it can also worsen the performance of the system, by
poor resource selection and by poor delegation routing. The
resource selection is mostly influenced by the load manage-
ment algorithm (discussed in Section 4.4). Figure 5 shows a
worst-case performance scenario for delegation routing. Del-
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Figure 5: A worst-case performance scenario for del-
egated matchmaking.

egation requests in the figure are ordered in time in their
lexicographical order (i.e., delegation A occurs before dele-
gation B). Site 9 issues a delegation request to site 23. The
site schedulers base their decision only on local information.
Due to the lack of information, sites are unable to find the
appropriate candidate (here, site 4), and unnecessary dele-
gation requests occur. This leads in turn to messaging over-
heads, and to increased waiting times, due to waiting for
the delegation and matchmaking cycles of the target sites.
Additionally, the decision to delegate resource requests can
lead to a suboptimal number of delegations, either too few
or too many. All these load management decisions influence
decisively the way the delegated matchmaking mechanism is
used. We dedicate therefore the next section to load man-
agement.

4.4 The Delegated MatchMaking Policies
To manage the load, we use two independent algorithms:

the delegation algorithm, and the local requests dispatching
algorithm. We describe them and their associated policies
below.

The delegation algorithm selects what part of the load to
delegate, and the site manager from which the resources
necessary to serve the load can be obtained. This algo-
rithm is executed whenever the current system load is over
an administrator-specified delegation threshold, and at fixed
intervals of time. First, requests are ordered according to a
customizable delegation policy, e.g., FCFS. Then, the algo-
rithm tries to delegate all the requests, in order, until the
local load gets below the threshold that triggered the dele-
gation alarm. The algorithm has to select for each request
a possible target from which to bring resources locally. By
design, the potential targets must be selected from the site’s
neighborhood. The neighbors are ordered according to a
customizable target site ordering policy, which may take into
account information about the current status of the target
(e.g., its number of free resources), and an administrator se-
lection of the request-to-target fitting (e.g., Best Fit). Upon
finding the best target, the delegation protocol is initiated.

The local requests dispatching policy deals with the order-
ing of resource requests, both local and delegated. Similarly
to the Condor’s matchmaking cycle, we call this algorithm
periodically, at intervals normally longer than those of the
delegation algorithm cycle. The administrator may select
the local request dispatching policy.

We argue that our architecture is operated with a generic
load management mechanism. The three policies defined
above allow for many traditional scheduling algorithms, and
in particular gives our architecture the ability to leverage ex-
isting well-established on-line approximation algorithms [3].The
target site ordering policy enables the use in our architecture



of many of the results in traditional networking/queuing the-
ory [19]. However, we consider policy exploration and tuning
outside the scope of this paper.

5. THE EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of

our architecture for inter-operating grids. We first describe
the typical grid workloads, which are significantly different
from the workloads of traditional parallel production envi-
ronments [15, 20]. Specifically, a grid workload comprises a
high number of single-processor jobs, which are sent to the
grid in batches (Section 5.1).

We then present our experimental setup (Section 5.2):
a simulated environment encompassing both the DAS and
Grid’5000 grids, for a total of 20 sites and over 3300 proces-
sors. The workloads used in our experiments are either year-
long traces collected from the individual grids starting at
identical moments in time, or synthetic traces that reflect
the properties of grid workloads. Our experiments are aimed
at characterizing:

• The behavior of the DMM architecture and of its alter-
natives, for a duration of one year (Section 5.3);

• The performance of the DMM architecture, and of its
alternatives, under various load levels (Section 5.4);

• The effects of an imbalance between the loads of dif-
ferent grids on the performance of the DMM architecture
and of its alternatives (Section 5.5);

• The influence of the DMM’s delegation threshold para-
meter on the performance of the system (Section 5.6).

5.1 Intermezzo: Typical Grid Workloads
Two main factors contributing to the reduction of the per-

formance of large-scaled shared systems, such as grids, are
the overhead imposed by the system architecture (i.e., the
messages, the mechanisms for ensuring access to resources
etc.), and the queuing effects due to the random nature of
the demand. While the former is under the system designer’s
control, the latter is dependent on the workload. Despite a
strong dependency of performance on the system workload,
most of the research in grid resource management does not
employ realistic workloads (i.e., trace-based, or based on a
validated workload model with realistic parameter values).
For the few reported research results that attempt to use re-
alistic workloads, the traces considered have been taken from
or modelled after the Parallel Workloads Archive (PWA) [2].
However, there exist significant differences between the par-
allel supercomputers workloads in the PWA and the work-
loads of real grid environments. In this section we present
two important distinctions between them.

First, the percentage of ”serial” (single-processor) jobs is
much higher in grid traces than in the PWA traces. There
exist 70%-100% single-processor jobs in grid traces (the per-
centage grows to 99-100% in most production grid envi-
ronments), but only 20%-30% in the PWA traces [20, 16].
There are two potential consequences: on the one hand, the
resource managers become much more loaded, due to the
higher number of jobs. On the other hand, the resource man-
agers can be much simpler, since individual single-processor
jobs raise fewer scheduling issues.

Second, the grid single-processor jobs typically represent
instances of conveniently parallel jobs, or batch submissions.
A batch submission is a set of jobs ordered by the time when
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Figure 6: The variability of the runtimes of jobs in
batch submissions in grids.

they arrive in the system, where each job was submitted at
most ∆ seconds after the first job (∆ = 120s is considered
the most significant). In a recent study, Iosup et al. [17] show
that 70% of the jobs, accounting for 80% of the consumed
processor time, are part of batch submissions. The batch
submissions are usually managed by batch engines, and the
individual jobs arrive in the system independently. Figure 6
shows that the runtime of jobs belonging to the same batch
submission varies on average by at least two orders of magni-
tude, and that the variability increases towards five orders of
magnitude as the size of the batch reaches 500 or more jobs.
The predominance of batch submissions and their jobs’ high
runtime variability have a high impact on the operation of a
large number of today’s cluster and grid schedulers. Indeed,
the user must submit many jobs as a batch submission with
a single runtime estimate. Hence, the user cannot estimate
the runtime of individual jobs, other than specifying a large
value, typically the largest value allowed by the system. As
a result, the scheduling schemes relying on user estimates,
e.g., all backfilling variants [27],are severely affected.

5.2 The Experimental Setup

5.2.1 The Simulator
We have developed a custom discrete event simulator to

simulate the combined DAS-2 and Grid’5000 grid system
(see Section 2). Each of the 20 clusters of the combined sys-
tem receives an independent stream of jobs. Depending on
each job’s parallelism, one or several resources are assigned
to it exclusively, from the time when the job starts until the
time when the job finishes.

We attempt to evaluate the steady-state of the simulated
system. To this end, unless otherwise specified the last sim-
ulated event in each simulation is the arrival of the last job,
all job streams considered together. This ensures that our
simulation does not include the cool-down phase of the sys-
tem, in which no more jobs arrive while the system finishes
the remaining load. The inclusion of the cool-down phase
may bias the performance metrics, especially if the last jobs
queue at only few of the clusters. We do not perform a
similar elimination for system warm-up, as (a) we cannot
distinguish reliably between the warm-up period and the
normal system behavior, and (b) given the long duration of
the jobs (see the workloads description in Section 5.2.2), the
start-up period is small compared to the remainder of the
simulation, especially for high load levels.

The simulator assesses the following performance metrics:

Utilization, Wait and Response Time, Slowdown We
consider in this work the average values of the system



utilization (U), average job wait time (AWT), average
job response time, and average job slowdown (ASD).
For a review of these traditional performance metrics,
we refer to [13].

Goodput, expressed as the total processing time of jobs
that finish successfully, from the point of view of the
grid resource manager (similar to the traditional def-
inition [5], but taking into consideration that all grid
jobs are executed ”remotely” from the user’s perspec-
tive). For the DMM architecture, we also measure the
goodput of jobs running on resources obtained through
delegated matchmaking. Furthermore, we account for
goodput obtained on resources delegated from the same
site (intra-site goodput), from the same grid (intra-grid
goodput), and between the grids (inter-grid goodput).

Finished Jobs (JF%), expressed as the percentage of jobs
that finish, from the jobs in the trace. Due to the cool-
down period elimination, the maximum value for this
metric is lower than 100%.

Overhead We consider the overhead of an architecture as
the number of messages it employs to manage the
workload. There are five types of messages: Notify
Broker, Negotiate, Job Data Exchange, Resource Match-
Claim-Release, and DMM (the last specific to our ar-
chitecture). The Overhead is then expressed as a set
of five values, one for the number of messages of each
type. Additionally, we consider for our architecture
the number of delegations of a job, which is defined as
the length of its delegation chain.

5.2.2 The Workloads
We use two workload selection approaches: real grid traces,

and synthetic workloads based on properties of real grid
traces. To the best of our knowledge, ours is the first study
that takes into account the difference between the paral-
lel supercomputers workloads (comprising mostly parallel
jobs), and the workloads in real grid environments (com-
prising almost only single-node jobs).

To validate our approach (Section 5.3), we use traces col-
lected for each of the simulated clusters, starting at identi-
cal moments in time (the traces are described in Section 2).
However, these traces raise two problems. First, they incur
a load below 20% of the combined system [16]. Second, they
represent the workload of research grid environments, which
contains many more parallel jobs than in a production grid.

To address both these issues, we employ a model-based
trace generation for the rest of our experiments. We use
the Lublin and Feitelson model (LFM) [20], which has de-
servedly become the de-facto standard for the community
that focuses on resource management in large-scale comput-
ing environments. Using this model, we generate streams
of rigid jobs (that is, whose size is fixed at the job’s ar-
rival in the system) for each cluster. Unless otherwise spec-
ified, we use the default LFM parameter values. The job
arrival times during the peak hours of the day are modelled
in LFM using a Gamma distribution. To generate jobs for
a longer period of time, the LFM uses daily cycle with a
sinusoidal shape, where the highest value of the curve corre-
sponds to the peak hours. The job parallelism is modelled
for three classes: single-processor jobs, parallel jobs with
a power-of-two number of nodes, and other parallel jobs.
We change the default value of the probability of a new job
to be single-processor, p, to reflect the values encountered

System Architecture Operation
condor Independent Matchmaking
sep-c Independent Job routing
cern Centralized Job pull
koala Centralized Job routing
fcondor Federated Matchmaking

DMM Distributed Matchmaking

Table 2: Simulated meta-scheduling architectures.

in grid systems: p = 0.95 [16]. The LFM divides the re-
maining jobs between the parallel jobs classes, with equal
probability. The actual runtime time of a job is modelled
with a hyper-Gamma distribution with two stages; for par-
allel jobs, the parameter that represents the probability of
selecting the first hyper-Gamma stage over the second de-
pends linearly on the number of nodes. Thus, the largest
jobs have a high probability of also having a long runtime.
With these parameters, the average job runtime is around
one hour.

By modifying the parameters of the Lublin-Feitelson model
that characterize the inter-arrival time between consecutive
jobs during peak hours, we are able to generate a load of
a given level (e.g., 70%), for a system of known size (e.g.,
128 processors), during a specified period (e.g., 1 month).
Using this approach, we generate 10 sets of 20 synthetic job
streams (one per simulated cluster) for each of the follow-
ing load levels: 10%, 30%, 50%-100% in increments of 10%,
95%, 98%, 120%, 150%, and 200%. We call the default load
levels the following nine load levels: 10%, 30%, 50%, 60%,
70%, 80%, 90%, 95%, and 98%. The results reported in Sec-
tions 5.4, 5.5, and 5.6 are for workloads with a duration of 1
day, for a total of 953 to 39550 jobs per set (11827 jobs per
set, on average). We have repeated some of the experiments
in Sections 5.4 and 5.6 for traces with the duration of 1 week
and 1 month, with similar results.

5.2.3 The Simulated Architectures
For the simulation of the DMM architecture, unless oth-

erwise noted, we use a delegation threshold of 1.0 and a
matchmaking cycle of 300s. Throughout the experiments,
we employ a FCFS delegation policy, a target site ordering
policy that considers only the directly connected neighbors
of a site, and a FCFS local requests dispatching policy. We
simulate five alternative architecture models, described be-
low and summarized in Table 2.

1. cern This is a centralized meta-scheduler architecture
with job pull operation, in which users submit all their
jobs to a central queue. Whenever they have free re-
sources, sites pull jobs from the central queue. Jobs
are pulled in the order they arrive in the system.

2. condor This is an independent clusters architecture with
matchmaking operation that simulates a Condor-like
architecture. Unlike the real system, the emulation
does not prioritize users through a fair-sharing mech-
anism [26]. Instead, at each matchmaking round jobs
are considered in the order of arrival in the system.
The matchmaking cycle occurs every 300s, the de-
fault value for Condor (see NEGOTIATOR_INTERVAL in
the Condor manual).

3. fcondor This is a federated clusters architecture with
matchmaking operation that simulates a Condor-like
architecture with flocking capabilities [12]. The user’s
job manager will switch to a new site manager when-
ever the current site manager cannot solve all of its



resource demands. This simulation model also includes
the concept of fair-sharing employed by Condor in prac-
tice [26]. At each matchmaking round, users are sorted
by their past usage, which is reduced (decayed) with
time. Then, users are served in order, and for each
user all feasible demands are solved. Similarly to con-

dor, the matchmaking cycle occurs every 300s. The
performance of the fcondor simulator corresponds to
an optimistic performance estimation of a real Condor
system with flocking, for two reasons. First, in the
fcondor simulator, we allow any job manager to con-
nect to any site manager. This potentially reduces the
average job wait time, especially when the grids re-
ceive imbalanced load, as JMs can use SMs otherwise
unavailable. Second, jobs that cannot be temporar-
ily served are bypassed by jobs that can. Given that
95% of the jobs are single-processor, this results in se-
quential jobs being executed before parallel jobs, when
the system is highly loaded. Then, the resource frag-
mentation and the average wait time decrease, and the
utilization increases.

4. koala This is a centralized meta-scheduler architecture
with job push operation. Users submit all their jobs to
a central queue. As soon as jobs arrive, the queue dis-
patches them on sites with free resources. Jobs stay
in the queue until free resources are found. The in-
formation about the number of free resources is gath-
ered periodically by a monitoring service. Note that
the Koala implementation leverages non-conservative
backfilling [21], and has therefore better performance
than the simple model simulated here.

5. sep-c This is an independent clusters architecture with
job push operation.

5.2.4 The Assumptions
In our simulations we make the following assumptions:

Assumption 1: No network overhead We assume a per-
fect communication network between the simulated sys-
tems, with 0-latency. Given the average job runtime
of one hour, we argue that this assumption has little
effect. However, we do present the number of messages
used by our architecture to manage the workload.

Assumption 2: Identical processors To isolate the ef-
fects of the resource management solutions, we assume
identical processors across all clusters. However, the
system is heterogeneous in number of processors per
cluster.

Assumption 3: FCFS scheduling policy at cluster-level
We assume that each site employs a FCFS policy, with-
out backfilling. Backfilling systems are effective when
many parallel jobs exist in the system, and when ac-
curate job runtime predictions are given by the users.
This situation is uncommon in grids.

Assumption 4: Processors as scheduling unit In Con-
dor, multi-processor machines can be viewed (and used)
as several single-processor machines. We assume that
this feature is available regardless of the modelled al-
ternative architectures. Note that this increases the
performance of the cern, sep-c, and koala architec-
tures, and has no effect on the Condor-based condor,
fcondor, and DMM.

No.Jobs AWT ASD Goodput JF
Simulator [kJobs] [s] [CPUyr] [%]
cern 455.4 44 6 117 100
condor 455.4 7,681 1,610 117 100
DMM 455.4 1,283 298 117 100
fcondor 455.4 2,570 255 117 100
sep-c 455.4 1,938 590 117 100

Table 3: Performance results when running real
long-term traces.

Assumption 5: No background load In many grids, jobs
may arrive directly at the local clusters’ resource man-
ager, i.e., bypassing the grid. However, there is lit-
tle information on the load imposed by this additional
workload in practice. Therefore, we assume that there
exists no background load in the system.

5.3 Preliminary Real Trace-Based Evaluation
For this experiment, we first assess the behavior of the

DMM architecture and of its alternatives when managing a
contiguous subset of 4 months from the real grid traces de-
scribed in Section 2, starting from 01/11/2005. Only for
this experiment, we do not stop the simulation upon the ar-
rival of the last job, and we do include the cool-down period.
However, no jobs arrive after the 4-months limit.

Table 3 shows the performance results for running the
real traces over the whole 4-months period. All architectures
successfully manage all the load. However, the ASD and the
AWT vary greatly across architectures. The cern has the
smallest ASD and AWT, by a large margin. This is because,
unlike the alternatives, it is centralized, and operates in a
lightly loaded system, where little guidance is needed, but its
speed is critical for good performance. The fcondor and the
DMM have similar performance, and are both better than the
independent clusters architectures (condor and sep-c). For
the latter the job response time is dominated by the time
spent waiting for resources. Independently of whether we
use AWT or ASD, the condor has a poorer performance than
sep-c: the time spent waiting for the next matchmaking
cycle affects negatively the performance of condor.

We have repeated the experiments for a one-year sample
with the same starting point, 01/11/2005. We have obtained
similar results, with the notable exception of fcondor, whose
AWT degraded significantly (it became the worst of all ar-
chitectures !). We attribute this poor performance to the
flocking target selection: if the target SM is also very loaded,
fcondor wastes significant time, since the JM will have to
wait for the target SM’s next matchmaking cycle to discover
that the latter cannot fulfill any demands. This gives further
reasons for the development of a dynamic target selection
mechanism such as the DMM.

5.4 Performance Assessment
In this section we assess the performance of the DMM archi-

tecture and of its alternatives under various load levels. We
report the results for the default load levels (defined in Sec-
tion 5.2.2). Figure 7 shows the performance of the DMM archi-
tecture and of its alternatives, under the default load levels.
Starting with a medium system utilization (50%) and up,
DMM offers better goodput than the alternatives. The largest
difference is achieved for a load of 80%. At this load, DMM
offers 32% more goodput than the fcondor. We attribute
this difference to DMM’s better target site selection policy,
and quicker rejection of delegations by loaded sites that are
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Figure 7: The performance of the DMM architecture
compared with that of alternative architectures, for
various system loads.

incorrectly targeted. The centralized meta-schedulers, cern
and koala, offer in general lower goodput values with the
notable exception of cern’s 24% improvement over the best
architecture (DMM and fcondor, tied) for a load level of 30%.

The AWT and the ASD of DMM remain similar to that of
central meta-scheduler architectures, regardless of the load
level. However, DMM incurs lower AWT and ASD than fcon-

dor at loads over 70%, and much better JF% than cern and
koala. DMM and fcondor manage to finish many more jobs
than their alternatives, in the same time: up to 93% more
jobs finished, for load levels below 60%, and up to 378%
more jobs finished, for loads up to 98%. We explain these
large differences to the scheduling mechanism. The central-
ized architectures (cern and koala) operated with FCFS
may keep many jobs blocked in the queue when the old-

est job cannot find its needed resources. The decentralized
architectures (DMM and fcondor) act as natural backfilling
algorithms, that is, they delegate the blocked jobs and dis-
patch the others. The large delegated jobs will not starve,
due to the DTTL (see Section 4.3). Finally, there is a differ-
ence of 0%-4% in JF% between DMM and fcondor, in favor
of DMM.

The independent cluster architectures, sep-c and condor,
are outperformed by the other architectures for all load levels
and for all performance metrics.

The additional performance comes at a cost: the addi-
tional messages sent by the DMM architecture for its delega-
tions. Figure 7 also shows the number of delegations per
job. Surprisingly, this overhead is relatively constant for all
loads below 90%. This suggests that at medium to high load
levels, the DMM manages to find suitable delegation targets
in linear time, while using a completely decentralized rout-
ing algorithm. Above 80% load, the system is overloaded,
and DMM struggles to find good delegation targets, which in-
creases the number of delegations per job linearly with the
load level increase.

5.5 Influence of Load Imbalance
In this section we present the effects of an imbalance be-

tween the loads of the two grids on the performance of the
DMM architecture and of its alternatives. We simulate an im-
balance between the load of the DAS, which we keep fixed
at 60%, and that of Grid’5000, which we vary from 60%
to 200%. Note that at load levels higher than 120% for
Grid’5000, the two-grid system is overloaded.

Figure 8 shows the performance of the DMM for various im-
balanced system loads. The figure uses a logarithmic scale
for the average wait time and for the average slowdown. At
60%/100% load, the system starts to be overloaded, and all
architectures but the DMM ”suffocate”, i.e., they are unable
to start all jobs. At 60%/150%, when the system is truly
saturated, only DMM can finish more than 80% of the load
(it finishes over 95%). The DMM architecture is superior to
its alternatives both in goodput and in percentage of fin-
ished jobs. Compared to its best alternative, fcondor, DMM
achieves up to 60% more goodput, and finishes up to 26%
more jobs. The cern architecture achieves lower ASD by
not starting most of its incoming workload!

Similarly to the case of balanced load, the number of del-
egations per job is relatively constant for imbalanced loads
of up to 60%/100%. Afterwards, the number of delegations
per job increases linearly with the load level increase, but at
a higher rate than for the balanced load case.

To better understand the cause for the performance of
the DMM, we show in Figure 9 the breakdown of the good-
put components for various imbalanced system loads. Ac-
cording to the ”keep the load local” policy (defined in Sec-
tion 2.1), the goodput on resources delegated between sites
is low for per-grid loads below 100%. However, as soon as
the Grid’5000 grid is overloaded, the inter-grid delegations
become frequent, and the inter-grid goodput rises, to up to
37% from the goodput obtained on delegated resources. A
similar effect can be observed for the intra-grid goodput, and
for the intra-site goodput.

5.6 Influence of the Delegation Threshold
The moments when the DMM architecture issues delegations

and the number of requested resources depend highly on the
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Figure 8: The performance of the DMM compared with
that of alternative architectures, for various imbal-
anced system loads.
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delegation threshold. We therefore assess in this section the
influence of the delegation threshold on the performance of
the system.

Figure 10 shows the performance of the DMM architecture
for values of the delegation threshold ranging from 0.60 to
1.25, and for six load levels ranging from 10% to 98%. A
system administrator attempting to tune the system perfor-
mance while keeping the overhead reduced, should select the
best delegation threshold for the predicted system load. For
a lightly loaded system, with a load of 30%, setting a delega-
tion threshold higher than 1.0 leads to a quick degradation
of the system performance. For a system load of 70%, con-

0.0*10
0

2.0*10
7

4.0*10
7

6.0*10
7

8.0*10
7

1.0*10
8

1.2*10
8

1.4*10
8

1.6*10
8

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

G
o
o
d
p
u
t 
[C

P
U

s
]

Load=10%
Load=30%
Load=50%
Load=70%
Load=90%
Load=98%

0

200

400

600

800

1000

1200

0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

A
v
g
. 
W

a
it

T
im

e
 [
s
] Load=10%

Load=30%
Load=50%
Load=70%
Load=90%
Load=98%

Delegated MatchMaking Threshold

Figure 10: The performance of the DMM architecture
for various values of the delegation threshold.
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Figure 11: The distribution of the messages in the
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sidered high in systems that can run parallel jobs [18], the
best delegation threshold is 1.0, as it offers both the best
goodput, and the lowest AWT and ASD.

5.7 The Message Overhead
We define the workload management messages as the No-

tifyBroker, the Negotiate, the Job Data Exchange, and
the Resource Match-Claim-Release messages used by the
delegated matchmaking mechanism (see Section 4.3). Fig-
ure 11(a) shows the distributions of the number of workload
management and of the Resource Use messages, for vari-
ous system loads. DMM adds only up to 19% more messages
to the workload management messages for load levels be-
low 60%, but up to 97% for higher load levels. However,
the majority of messages in Condor-based systems are the
KeepAlive messages exchanged between the JM and the RM
while user’s jobs are being run by the RM. When taking into
consideration the KeepAlive messages, the messaging over-
head incurred by DMM is at most 16%.

Figure 11(b) shows the distribution of the messages in the
DMM architecture, for various values of the delegation thresh-
old. The system’s load level is set to 70%. The number of
DMM messages accounts for 7% to 16% of the total number of
messages, and decreases with the growth of the delegation
threshold. The workload management overhead grows from
35% (threshold 1.0) to 86% (threshold 0.6).



6. CONCLUSION AND FUTURE WORK
The next step in the evolution of grids is to inter-operate

several grids into a single computing infrastructure, to serve
larger and more diverse communities of scientists. This
raises additional challenges, e.g., load management between
separate administrative entities. In this paper we have pro-
posed DMM, a novel delegated matchmaking architecture for
inter-operating grids. Our hybrid hierarchical/distributed
architecture allows the interconnection of several grids, with-
out requiring the operation of a central point of the hierar-
chy. In DMM, when a user’s request cannot be satisfied locally,
remote resources are transparently added to the user’s site
through delegated matchmaking.

We have evaluated with simulations the performance of
our proposed architecture, and compared it against that of
five alternative architectures. A key aspect of this research
is that the workloads used throughout the experiments are
either real long-term grid traces, or synthetic traces that
reflect the properties of grid workloads. The analysis of
system performance under balanced inter-grid load shows
that our architecture can accommodate equally well low and
high (up to 80%) system loads. In addition, the results show
that starting from a system utilization of 50% and up to
98%, the DMM offers a better goodput and a lower average
wait time than the considered alternatives. As a result, DMM
can finish up to 378% more jobs than its alternatives. The
difference increases when the inter-operated grids experience
high and imbalanced loads. Our analysis of performance
under imbalanced inter-grid load reveals that, compared to
its best alternative, DMM achieves up to 60% more goodput,
and finishes up to 26% more jobs.

These results demonstrate that the DMM architecture can
result in significant performance and administrative advan-
tages. We expect that this work will simplify the current
efforts in inter-operating the DAS and Grid’5000 systems,
which are currently under way. To this end, we expect to
implement and to deploy our architecture in the following
year. From the technical point of view, we also intend to ex-
tend our simulations to a more heterogeneous platform, to
account for resource and job failures, and to investigate the
impact of existing and unmovable load at the cluster level.
Finally, we hope that this architecture will become a useful
step for sharing resources across grids.
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