
A Framework for Self-optimizing, Fault-tolerant, High Performance Bulk Data
Transfers in a Heterogeneous Grid Environment

Tevfik Kosar, George Kola and Miron Livny
Computer Sciences Department, University of Wisconsin-Madison

1210 West Dayton Street, Madison WI 53706
{kosart,kola,miron}@cs.wisc.edu

Abstract

The drastic increase in the data requirements of scientific
applications combined with an increasing trend towards
collaborative research has resulted in the need to trans-
fer large amounts of data among the participating sites.
The general approach to transferring such large amounts
of data has been to either dump data to tapes and mail them
or employ scripts with an operator at each site to baby-sit
the transfers to deal with failures. We introduce a frame-
work which automates the whole process of data movement
between different sites. The framework does not require any
human intervention and it can recover automatically from
various kinds of storage system, network, and software fail-
ures, guaranteeing completion of the transfers. The frame-
work has sophisticated monitoring and tuning capability
that increases the performance of the data transfers on the
fly. The framework also generates on-the-fly visualization of
the transfers making identification of problems and bottle-
necks in the system simple.

1. Introduction

With the increase in collaborative research, the amount
of data that has to be transferred among participating sites
is increasing. In many cases, due to the lack of a common
interface and the know-how to perform high performance
bulk data transfers, researchers have resorted to dumping of
data to tapes and shipping them via Federal Express [7].

Owing to the various data grid initiatives [12] [20], the
underlying network capacity has increased enough to be
able to support such bulk data transfers. Many of the large
collaborative research initiatives like CMS [4] have multi-
ple participating sites and need to move data among them.
Further, the different storage sites employ different mass-
storage systems which do not have a common interface. The
general approach in this case has been to use scripts along

with having an operator at each site to baby-sit the trans-
fers.

We have designed and implemented a framework that
fully automates data transfers between heterogeneous sys-
tems. The framework supports most of the protocols used
for data transfers and makes it simple to support new proto-
cols. The framework performs dynamic tuning of protocol
parameters depending on the environment conditions im-
proving the performance of data transfers on the fly. The
framework is highly resilient and can automatically recover
from a variety of network, storage system and software fail-
ures.

2. Related Work

Allcock et al [1] introduce the GridFTP protocol and
Replica Catalog and discuss how they can be used for se-
cure and efficient data transfer and data replication. The Re-
liable File Transfer Service(RFT) [19] allows byte streams
to be transferred in a reliable manner. It is able to han-
dle a wide variety of problems like dropped connections,
machine reboots, and temporary network outages automati-
cally via retrying. Kangaroo [21] provides high throughput
wide-area data movement for remotely executing jobs by
overlapping CPU and I/O. Kangaroo also has a certain de-
gree of fault tolerance to cope with failures that occur in the
wide-area. GridFTP, RFT and Kangaroo are tools that can
be used to move data between two end-points supporting
their interface. They cannot be used to move data between
heterogeneous storage systems lacking a common interface.
In addition, they do not have network monitoring and auto-
tuning capabilities.

Feng [7] mentions a case where visualization scientists
at Los Alamos National Laboratory dump data to tapes and
send them to Sandia National Laboratory via Federal Ex-
press as it is faster than electronically transmitting them via
TCP over the 155 Mbps(OC-3) WAN backbone.

The Lightweight Data Replicator (LDR) [14] can repli-
cate data sets to the member sites of a Virtual Organization



or Data Grid. It was developed for replicating LIGO [16]
data, and in its present form, LDR expects the use of a single
data transport protocol (GridFTP). Our framework is more
general in nature. It allows data movement between systems
not supporting a single data transport protocol. Our frame-
work is flexible and can be used to perform a variety of data
management operations including replication.

3. Framework

The framework brings together a set of tools for en-
abling data transfers in a heterogeneous environment. We
have leveraged existing tools and have built new ones to
complement them. We list the tools used in the framework
and explain the functions they perform.

Condor. The Condor [17] workload management sys-
tem was selected as the scheduler for computational jobs in
our framework. Condor provides a job queuing mechanism
and resource monitoring capabilities. It allows the users to
specify scheduling policies and enforce priorities. Condor
has an extension called Condor-G [9], which allows users
to submit their jobs to inter-domain resources by using the
Globus Toolkit [8] functionality. In this way, user jobs can
get scheduled and run not only on Condor resources but also
on PBS [10], LSF [22], LoadLeveler [11], and other grid re-
sources.

Stork. We have used Stork [15] as the scheduler for data
transfer jobs. Stork is a specialized scheduler for data place-
ment activities in heterogeneous environments. Data place-
ment encompasses all data movement related activities such
as transfer, staging, replication, space allocation and de-
allocation. Stork can queue, schedule, monitor, and man-
age data placement jobs and ensure that the jobs complete.

Directed Acyclic Graph Manager(DAGMan). We use
a Directed Acyclic Graph(DAG) to represent data move-
ment in our framework. In a DAG, jobs are represented as
nodes and the dependencies between jobs are represented as
directed arcs between the respective nodes.

Figure 1 shows a sample data movement with computa-
tion. Data from a source S is moved to execute site E. E
transforms the data and sends the result to destinations D1,
D2 and D3. Figure 2 shows the DAG for the sample data
movement with computation. There are nodes(jobs) to re-
move the data from the intermediate nodes after the data
movement. We feel that the DAG Model is very flexible and
gets its power from being able to run computation along-
side data movement. It is possible to perform sophisticated
processing using the DAG. For example the Destination D2
may want only a subset of data from E. In this case, D2 can
upload a filter which will determine whether the file should
be transferred to D2. Also it would be possible to run com-
putation on the result generated at E to determine where the
file should go to. This is very useful in real-life where data

Figure 1. A Sample Data Movement with Com-
putation. Data from source S is transferred to
execute site E. E performs a computation on
the data and sends the result to destinations
D1, D2 and D3.

Figure 2. DAG for the Sample Data Movement
with Computation. Data X is transferred from
source S to execute site E. E performs a com-
putation on the data X generating data Y. Data
Y is sent destinations D1, D2 and D3.

with certain characteristics is useful to certain sites and a
computation needs to be run on the data to determine if it
has those characteristics. This feature eliminates the need to
transfer all the data and then discard the irrelevant ones.

To perform the management of the DAGs, we employed
the Directed Acyclic Graph Manager (DAGMan) [5] which
is a service for executing multiple jobs with dependencies
between them. DAGMan accepts a declaration that speci-
fies the jobs to be executed and the order of their execution.
It logs the execution of the DAG to persistent storage, al-
lowing it to resume a DAG where it left off, even in the face
of crashes and other failures.



We have introduced the concept of data placement jobs
to DAGMan. It can differentiate between computational
jobs and data placement jobs, and then submit computa-
tional jobs to Condor/Condor-G and the data placement
jobs to Stork. The progress of both computational and data
placement jobs can be monitored through user log files of
Condor and Stork.

Environment Monitoring Infrastructure. We have de-
veloped an environment monitoring infrastructure that mon-
itors the different environmental parameters affecting data
transfers. In its present form, the infrastructure monitors
disk, memory and network characteristics. We have devel-
oped memory and I/O profilers and built a network profiler
using existing tools.

The memory profiler determines the optimal memory
block size to be used to copy data and the memory copy
bandwidth. The I/O profiler determines the optimal read and
write block sizes and the increment block size that can be
added to the optimal value to get the same performance and
the disk bandwidth at the optimal value. The I/O profiler
takes a list of pathnames as input, so that it can determine
the characteristics of different disks in a multi-disk system.

The network parameters measured are end-to-end band-
width, end-to-end latency, number of hops, the latency of
each hop. The kernel TCP parameters are also determined
from /proc on linux. Since end-to-end measurement re-
quires two hosts, this measurement is done between every
pair of hosts that may transfer data between each other. We
used traceroute to get the number of hops and the latency
between hops.

For end-to-end bandwidth measurement, we used a com-
bination of intrusive and non-intrusive techniques. For the
non-intrusive measurement, we used pathrate which
uses packet dispersion techniques to estimate the bottle-
neck bandwidth. The intrusive method uses actual data
transfers. First, we used packet dispersion technique to esti-
mate the bandwidth and then we performed actual transfers
using DiskRouter transfer tool to get the available band-
width. If the numbers are widely different, we perform
a series of experiments to extract the correlation be-
tween the two. Once this initial setup is done, we always
use the non-intrusive technique. While the initial mea-
surement is long, subsequent periodic measurements are
light-weight and do not perturb the system.

The different profilers run as condor jobs on the respec-
tive nodes.

Parameter Tuner. The Parameter Tuner uses the infor-
mation collected by monitoring infrastructure and tries to
determine the optimal I/O block size, TCP buffer size and
the number of TCP streams for the data transfer from a
given node X to a given node Y.

It calculates the TCP buffer size as the bandwidth de-
lay product. For the number of parallel streams, it uses a

heuristic :it adds an extra stream for each hop with a la-
tency greater than 10ms. If there are multiple streams and
the number of streams is odd, it rounds it off to an even num-
ber. The reason for doing this is that some protocols do not
work well with an odd number of streams. For each stream,
it sets the TCP buffer size as the quotient of the bandwidth
delay product divided by the number of streams. This en-
sures that this scheme does not cause congestion in steady
state.

The reason for adding a stream for every 10ms hop is
as follows: In a high-latency multi-hop network path, each
of the hops may experience congestion independently. If a
bulk data transfer using a single TCP stream occurs over
such a high-latency multi-hop path, each congestion event
would shrink the TCP window size by half. Since this is
a high-latency path, it would take a long time for the win-
dow to grow, with the net result being that a single TCP
stream would be unable to utilize the full available band-
width. Having multiple streams reduces the bandwidth re-
duction of a single congestion event. Most probably only a
single stream would be affected by the congestion event and
halving the window size of that stream alone would be suf-
ficient to eliminate congestion. The probability of indepen-
dent congestion events occurring increases with the num-
ber of hops. Since only the high-latency hops have a signif-
icant impact because of the time taken to increase the win-
dow size, we added a stream for all high-latency hops and
empirically found that hops with latency greater than 10 ms
fell into the high-latency category.

The Parameter Tuner understands kernel TCP limita-
tions. Some machines may have a maximum TCP buffer
size limit less than the optimal needed for the transfer. In
such a case, the parameter tuner uses more streams so that
their aggregate buffer size is equal to that of the optimal
TCP-buffer size.

The Parameter Tuner gets the different optimal values
and generates overall optimal values. For instance, it makes
sure that the disk I/O block size is equal to or a multiple of
the TCP-buffer size.

The Tuning Infrastructure has the knowledge to perform
protocol-specific tuning. For instance GridFTP takes as in-
put only a single I/O block size, but the source and destina-
tion machines may have different optimal I/O block sizes.
For such cases, the tuning finds the I/O block size which is
optimal for both of them. The incremental block size mea-
sured by the disk profiler is used for this.

Finally, the parameter tuner creates a library of network
links, protocols and tuned parameters. A part of the li-
brary showing the parameters for gridftp for the link from
slic04.sdsc.edu to quest2.ncsa.uiuc.edu is shown below

[
link = "slic04.sdsc.edu - quest2.ncsa.uiuc.edu";
protocol = "gsiftp";



bs = 4096KB; //block size
tcp_bs = 1024KB; //tcp buffer size
p = 4; //parallelism

]

An instance of the parameter tuner is run for every pair
of nodes involved in the transfer and it can be executed on
any computation node.

Network Interface Statistics Generation Tool. We de-
veloped a tool to generate the network interface statistics,
which helps us find the actual bits flowing on the wire. It
also shows the number of packets and the number of lost
and dropped packets. It runs only on Linux and picks up
the information from /proc. It essentially samples the kernel
network counters. The sampling interval is tunable and we
recommend setting it between 5 and 30 seconds. The lower
value is to reduce the overhead and the upper value is be-
cause the counters are signed 32-bit and can overflow in 32
seconds on a gigabit link. The tool detects overflow and cor-
rects the statistics appropriately. The statistics are very use-
ful in debugging problems and identifying bottlenecks and
network misconfiguration.

Statistics Collection Tool. We developed this tool
to collect the network interface and data transfer statis-
tics from the different nodes and aggregate them in a com-
mon place. For the data transfer statistics, if the data
transfer tool generates statistics, we use them, other-
wise we use coarse-grained statistics generated by Stork.
The DiskRouter tool [13] generates extensive statis-
tics. We run the statistics collection tool periodically. The
tool is sophisticated enough to transfer only incremen-
tal updates. It also performs the role of logrotate for the
statistics log.

Data Exploration and Visualization(DEVise). DE-
Vise [18] is a data exploration system that allows users
to easily develop, browse, and share visual presenta-
tions of large tabular datasets (possibly containing or refer-
encing multimedia objects) from several sources. We used
DEVise to visualize the data. We found that it is easy to lo-
cate problems or potential problems from visualization in-
stead of looking through log files. Data visualization in
DEVise consists of the following steps

1. Creation of Schemas.
2. Creation of tables with each table described by an ap-

propriate schema.
3. Association of a data-source(file) with each table.
4. Creation of a session file describing the fields from ta-

bles to be displayed on each of the axes and also color and
other information.

DEVise visualization can be made accessible via the
web. The visualizations are interactive allowing users to
zoom in to areas of interest and zoom out to see the over-
all pattern.

Data Processing Tool. We developed this tool to pro-
cess the different statistics into DEVise table data. This tool

Figure 3. The Framework. This shows how
the different parts of the framework come to-
gether.

has to be run after the data collection tool. The data process-
ing tool also processes incremental data and appends them
to existing DEVise data-sources.

Visualization Generation Tool. This tool generates an
appropriate visualization based on the number of nodes and
the topology. Visualization generation needs to be done only
once for a given configuration. In our framework, we run
the visualization generation tool after the collection and
processing of initial statistics. For the incremental statis-
tics, processed data is appended to existing DEVise data-
sources. We use a DEVise feature whereby the visualiza-
tion automatically gets updated when the data-source is up-
dated.

Figure 3 shows how all of these pieces com together in
our framework. A DAG describing the data movement and
computation is submitted to DAGMan. DAGMan then sub-



mits computational jobs to Condor, and data placement jobs
to Stork. The Environment Monitoring Infrastructure feeds
the environment data to the Parameter Tuner which gener-
ates optimal parameter values. The optimal parameter val-
ues are fed to Stork which uses them to tune the data trans-
fers. The Network Interface Statistics Generator generates
network interface statistics. The Statistics Collector collects
the different statistics and feeds them to the Data Processor
which converts the statistics to DEVise data and appends
them to existing data-sources. The Visualization Genera-
tion Tool generates the visualization and publishes them on
a web-site. DEVise gets run on the server side on demand
and is responsible for displaying the visualization and up-
dating it when the data-source gets updated.

4. Experiment

NCSA scientists wanted to perform certain processing
on the Digital Palomar Sky Survey(DPOSS) [6] image data
residing on SRB [2] mass storage system at SDSC in Cal-
ifornia. The total data size was around 3 TB (2611 files of
1.1 GB each). NCSA located in Illinois has its own mass-
storage system called UniTree [3]. Since there was no di-
rect interface between SRB and UniTree at the time of the
experiment, the only way to perform the data transfer be-
tween these two storage systems was to move the data via
intermediate nodes. For this purpose, we designed two dif-
ferent configurations using our framework to transfer the
data. A metric of importance to use is the end-to-end trans-
fer rate. We measured the end-to-end transfer rate of a file
as the file size divided by the time interval between the in-
stant the DAG for the transfer is submitted to DAGMan and
the instant when the whole file reaches the destination and
all intermediate copies of the file are deleted. The end-to-
end transfer rate we report is the average end-to-end trans-
fer rate for a set of files.

4.1. First Configuration

The first approach we employed was to set up a cache
node at the NCSA site very close to the UniTree server. This
approach allowed us to transfer the DPOSS data first from
the SRB server to the NCSA cache node using the underly-
ing protocol of SRB, and then from the NCSA cache node
to UniTree server using the underlying protocol of Uni-
Tree. Figure 4 shows the topology of the network, bottle-
neck bandwidth and latencies.

The NCSA cache node had only 12 GB of local disk
space for our use and we could store only 10 image files
in that space. This implied that whenever we were done
with a file at the cache node, we had to remove it from
there to create space for the transfer of another file. Includ-
ing the removal step of the file, the end-to-end transfer of

Figure 4. Network Topology. The topology of
the network used in the transfers, with the
bottleneck bandwidth and latency between
each node.

each file consisted of three basic steps, all of which we con-
sidered as real jobs to be submitted either to the Condor
or Stork scheduling systems. Then all of these three node
DAGs were joined together to form a giant DAG as shown
in Figure 5, and the whole process was managed by DAG-
Man. The concurrency level k denotes the number of si-
multaneous file transfers taking place. Best throughput is
got out of the mass storage system with a certain concur-
rency level. The SRB and UniTree servers had gigabit eth-
ernet(1000 Mb/s) interface cards installed on them and the
NCSA cache node had a fast ethernet(100 Mb/s) interface
card installed on it. We found the bottleneck link to be the
fast ethernet interface card on the NCSA cache node.

We got an end-to-end transfer rate of 40Mb/s from the
SRB server to the UniTree server. We observed that the bot-
tleneck was the transfers between the SRB server and the
NCSA cache node. We found that the SRB protocol does
not have sufficient parameters to tune for wide-area data
transfers. So we decided to add another cache node at the
SDSC site to regulate the wide area transfers.

4.2. Second Configuration

In the second configuration, we introduced another cache
node to the system. This cache node was placed at the SDSC
site, very close to the SRB server. In this case, the data is
first transferred from the SRB server to the SDSC cache
node using the underlying protocol of SRB, then from the
SDSC cache node to the NCSA cache node using third-
party GridFTP transfers, and finally from the NCSA cache
node to the UniTree server using the underlying protocol of
UniTree. The space limitations of the NCSA cache node ap-
plied to the SDSC cache node as well, which required care-
ful cleanup of transferred files at both nodes. Including the



Figure 5. Transfer in 3 Steps. Three step
DAGs are combined into a giant DAG to per-
form transfers in the first configuration. k is
the concurrency level.

cleanup steps, the end-to-end transfer of each file consisted
of five basic steps as shown in Figure 6. Then all of these
five node DAGs were joined together to form a giant DAG
as in the previous pipeline. All of these jobs were executed
by Condor and Stork systems.

The SDSC cache node had a gigabit ethernet interface
card installed on it, but the link between the SDSC cache
node and the NCSA cache node still had a bandwidth of
100Mb/s due to the fast ethernet interface of the NCSA
cache node. Using this configuration, we got an end-to-
end transfer rate of 25.6 Mb/s, and the link between the
SDSC cache node and the NCSA cache node turned out to
be the bottleneck. At this point, we had not implemented
the auto-tuning infrastructure. We had done some intuitive
hand-tuning before we started the experiment.

Having two cache nodes gave us flexibility. We now had
the ability to use any protocol of choice to transfer data be-
tween the cache nodes. We used DiskRouter to transfer data
between the two cache nodes and found that we got an end-
to-end throughput of 47.6 Mb/s.

4.3. Automated Failure Recovery

The failure recovery mechanism in our framework works
at multiple levels. Stork has a sophisticated failure recovery
mechanism. Users can tell Stork to retry a transfer till it suc-
ceeds. They can also specify the number of retries. Stork
logs the progress to persistent storage and resumes trans-
fers even after crashes and reboots. DAGMan also has fail-
ure recovery mechanism and it too logs the progress to per-
sistent storage and resumes after crashes and reboots. DAG-
Man after retrying for a specified number of times, creates a
rescue DAG specifying the jobs which have not completed.

Figure 6. Transfer in 5 Steps. Five step DAGs
are combined into a giant DAG to perform the
transfers in the second configuration, with
concurrency level = k.

This rescue DAG can again be fed to DAGMan to be re-
tried.

During the course of the 3 Terabytes data movement, we
encountered a wide variety of failures. At times, either the
source or destination mass-storage systems stopped accept-
ing new transfers. Such outages lasted about an hour on the
average. In addition we had windows of scheduled main-
tenance activity. We also had wide-area network outages,
some lasting a couple of minutes and others lasting longer.
We also had software upgrades.

We found a need to insert a timeout on the data transfers.
Occasionally we found that a data transfer command would
hang. Most of the time, the problem occurred with third-
party wide-area transfers. Once in a while, a third-party
GridFTP transfer would hang. In the case of DiskRouter
we found that the actual transfer completed but we were not
notified of the completion. Because of these problems, we
added a timeout-feature to Stork. When the timeout is set,
Stork expects the data transfer to complete within the time-
out. If it does not, Stork terminates the data transfer, per-
forms cleanup and retries it. The results presented in this
subsection were obtained using the second configuration
with DiskRouter being used for data transfer between the
cache nodes.

Figure 7 shows two outages. This visualization was gen-
erated by DEVise. The first outage happened because Uni-
Tree refused new transfers. It lasted for 40 minutes. At that
point, two transfers to UniTree were in progress. The trans-
fers completed before the timeout expired. The second out-
age lasted slightly more than one and a half hours. It was
caused by a reconfiguration of the DiskRouter system. We
would like to mention that in both of the cases, the data
transfers resumed without human intervention and we no-



Figure 7. Automated Failure Recovery in
case of Server Problem and Software Up-
grade. The transfers recovered automatically
although first the UniTree server experiences
some problems and then the DiskRouter
servers running on the cache nodes get re-
configured and restarted.

ticed them by looking at the visualization later and verified
it with the log files.

In another case, first the SDSC cache machine was
rebooted and then there was a UW CS network outage
lasting a couple of hours. This disconnected the manage-
ment/submit site from the execution sites. The framework
automatically recovered from these two failures. Finally the
DiskRouter server stopped responding for a couple of hours.
The DiskRouter problem was partially caused by a network
reconfiguration at StarLight hosting the DiskRouter server.
Here again, our automatic failure recovery worked fine.

4.4. Testing the Run-time Protocol Auto-tuning

After implementing the run-time protocol auto-tuning,
we wanted to see its effect on the wide-area transfer be-
tween the cache nodes. We submitted 500 requests to the
Stork server to transfer the 1.1GB image files (total 550
GB) using GridFTP as the primary protocol. We used third-

party globus-url-copy transfers without any tuning or with-
out changing any of the default parameters.

Parameter Before auto-tuning After auto-tuning

parallelism 1 TCP stream 4 TCP streams
block size 1 MB 1 MB
tcp buffer size 64 KB 256 KB

Table 1. Network parameters for gridFTP be-
fore and after auto-tuning feature of Stork be-
ing turned on.

We turned off the auto-tuning feature of Stork at the be-
ginning of the experiment intentionally. The average data
transfer rate that globus-url-copy could get without any tun-
ing was only 0.5 MB/s. The default network parameters
used by globus-url-copy are shown in Table 1. After a while,
we turned on the auto-tuning feature of Stork. Stork first ob-
tained the optimal values for I/O block size, TCP buffer size
and the number of parallel TCP streams from the parame-
ter tuner. Then it applied these values to subsequent trans-
fers. Figure 8 shows the increase in the performance after
the auto-tuning feature is turned on. We got a speedup of
close to 20 times compared to transfers without tuning. The
auto-tuning mechanism performed better than our primitive
hand-tuning. Here again the visualization was generated by
DEVise and the statistics were collected and processed by
the framework tools.

5. Future Work

We want to add a feature to Stork to differentiate between
transient and permanent errors. For instance, a source file
not existing is a permanent error, whereas the destination
temporarily refusing to accept new transfers, is a transient
error. We also plan to add a trigger mechanism to Stork, so
that it can notify the designated person on encountering per-
manent errors. We are planning to use our framework for
CMS data movement.

6. Conclusion

We have designed and implemented a framework that
makes it easy to move data between heterogeneous systems.
The framework has environment monitoring and tuning ca-
pability which significantly boosts the performance of data
transfers. In our test case, the performance boost was 20
times. The framework is highly resilient and has features
to cope with a variety of network, storage system and soft-
ware failures.



Figure 8. Run-time Protocol Auto-tuning.
Stork starts the transfers using the GridFTP
protocol with auto-tuning turned off inten-
tionally. Then we turn the auto-tuning on, and
the performance increases drastically.

Through a real-life data transfer involving thousands of
large files, we have shown that our framework works and is
resilient to storage system, network, and software failures.
We present our framework as a viable alternative to dump-
ing data to tapes and FedExing them or writing scripts and
baby-sitting the scripts to deal with failures.

7. Acknowledgements

We would like to thank Robert J. Brunner, Michelle But-
ler and Jason Alt from NCSA; Philip Papadopoulos, Mason
J. Katz and George Kremenek from SDSC for the invalu-
able help in providing us access to their resources, support
and feedback. We would like to also thank James Frey for
helpful discussion and comments on the paper.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Secure, efficient data transport and replica man-
agement for high-performance data-intensive computing. In
IEEE Mass Storage Conference, San Diego, CA, April 2001.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In Proceedings of CASCON,
Toronto, Canada, 1998.

[3] M. Butler, R. Pennington, and J. A. Terstriep. Mass Stor-
age at NCSA: SGI DMF and HP UniTree. In Proceedings of
40th Cray User Group Conference, 1998.

[4] CMS. The Compact Muon Solenoid Project. http://cmsinfo.
cern.ch/.

[5] Condor. The Directed Acyclic Graph Manager. http://www.
cs.wisc.edu/condor/dagman, 2003.

[6] S. G. Djorgovski, R. R. Gal, S. C. Odewahn, R. R. de Car-
valho, R. Brunner, G. Longo, and R. Scaramella. The Palo-
mar Digital Sky Survey (DPOSS). Wide Field Surveys in
Cosmology, 1988.

[7] W. Feng. High Performance Transport Protocols. Los
Alamos National Laboratory, 2003.

[8] I. Foster and C. Kesselmann. Globus: A Toolkit-Based Grid
Architecture. In The Grid: Blueprints for a New Computing
Infrastructure, pages 259–278, Morgan Kaufmann, 1999.

[9] J. Frey, T. Tannenbaum, I. Foster, and S. Tuecke. Condor-G:
A Computation Management Agent for Multi-Institutional
Grids. In Tenth IEEE Symp. on High Performance Dis-
tributed Computing, San Francisco, CA, August 2001.

[10] R. Henderson and D. Tweten. Portable Batch System: Exter-
nal Reference Specification, 1996.

[11] IBM. Using and Administering IBM LoadLeveler. IBM Cor-
poration SC23-3989, 1996.

[12] D. Koester. Demonstrating the TeraGrid - A Distributed Su-
percomputer Machine Room. The Edge, The MITRE Ad-
vanced Technology Newsletter, 6(2), 2002.

[13] G. Kola and M. Livny. Diskrouter: A Flexible Infrastructure
for High Performance Large Scale Data Transfers. Technical
Report CS-TR-2003-1484, University of Wisconsin, 2003.

[14] S. Koranda and B. Moe. Lightweight Data Replicator.
http://www.lsc-group.phys.uwm.edu/lscdatagrid/LDR.

[15] T. Kosar and M. Livny. Scheduling Data Placement Activ-
ities in the Grid. Technical Report CS-TR-2003-1483, Uni-
versity of Wisconsin, 2003.

[16] LIGO. Laser Interferometer Gravitational Wave Observa-
tory. http://www.ligo.caltech.edu/, 2003.

[17] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A
Hunter of Idle Workstations. In Proceedings of the 8th In-
ternational Conference of Distributed Computing Systems,
pages 104–111, 1988.

[18] M. Livny, R. Ramakrishnanand, K. Beyerand, G. Chenand,
D. Donjerkovicand, S. Lawandeand, J. Myllymaki, and
K. Wenger. Devise: Integrated querying and visual explo-
ration of large datasets. In Proceedings of ACM SIGMOD,
May 1997.

[19] R. Maddurri and B. Allcock. Reliable File Transfer Service.
http://www-unix.mcs.anl.gov/ madduri/main.html, 2003.

[20] B. Sagal. Grid Computing: The European DataGrid Project.
In IEEE Nuclear Science Symposium and Medical Imaging
Conference, Lyon, France, October 2000.

[21] D. Thain, J. Basney, S. Son, and M. Livny. The kangaroo ap-
proach to data movement on the grid. In Proceedings of the
Tenth IEEE Symposium on High Performance Distributed
Computing, San Francisco, California, August 2001.

[22] S. Zhou. LSF: Load Sharing in Large-Scale Heterogeneous
Distributed Systems. In Proc. of Workshop on Cluster Com-
puting, 1992.


