
Cheap cycles from the desktop to the
dedicated cluster: combining opportunistic
and dedicated scheduling with Condor

Derek Wright
Department of Computer Sciences,
University of Wisconsin, Madison

Abstract

Clusters of commodity PC hardware running Linux are becoming widely used as
computational resources. Most software for controlling clusters relies on dedicated
scheduling algorithms. These algorithms assume the constant availability of re-
sources to compute fixed schedules. Unfortunately, due to hardware and software
failures, dedicated resources are not always available over the long-term. More-
over, these dedicated scheduling solutions are only applicable to certain classes of
jobs, and they can only manage clusters or large SMP machines. The Condor High
Throughput Computing System overcomes these limitations by combining aspects
of dedicated and opportunistic scheduling into a single system. Both parallel and
serial jobs are managed at the same time, allowing a simpler interface for the user
and better resource utilization. This paper describes the Condor system, defines
opportunistic scheduling, explains how Condor supports MPI jobs with a combi-
nation of dedicated and opportunistic scheduling, and shows the advantages gained
by such an approach. An exploration of future work in these areas concludes the
paper. By using both desktop workstations and dedicated clusters, Condor har-
nesses all available computational power to enable the best possible science at a
low cost.

1 Introduction

Science and industry are increasingly reliant on large amounts of computational
power. With more CPU cycles, larger problems can be solved and more accurate
results can be obtained. However, large quantities of computational resources have
not always been affordable to the end user. Small research groups and institutions
are often unable to acquire the resources necessary to meet their computational
needs.



The Condor High Throughput Computing System has scavenged otherwise
wasted CPU cycles from desktop workstations for more than a decade [1][2][3].
These inconsistently available resources have proven to be a significant source of
computational power, enabling scientists to solve ever more complex problems.
Condor efficiently harnesses existing resources, reducing or eliminating the need
to purchase expensive supercomputer time or equivalent hardware.

In recent years, a new trend has emerged. Clusters of commodity PC hard-
ware running Linux are becoming widely used as computational resources. The
cost to performance ratio for such clusters is unmatched by other platforms. It
is now feasible for smaller groups to purchase and maintain their own clusters.
However, these clusters introduce a new set of problems to the end user. There are
problems with both the dedicated nature of the resources in the clusters, and with
the scheduling systems used to manage these resources.

1.1 Dedicated resources are not dedicated

Most software for controlling clusters relies on dedicated scheduling algorithms.
These algorithms assume the constant availability of resources to compute fixed
schedules. Unfortunately, due to hardware or software failures, dedicated re-
sources are not always available over the long-term. Everything from routine
system maintenance down-time and scheduled interactive use, to disk failures, net-
work outages, and other unexpected problems, can cause significant problems for
dedicated scheduling algorithms. No resource is always available.

As the price of hardware continues to decline, the size and computational
power of these dedicated clusters continues to increase. However, the increase
in size also increases the probability of hardware failure. This compounds the
problems introduced by scheduling software that assumes continuous availability.

1.2 The problems with dedicated schedulers

Most dedicated scheduling solutions currently in use are only applicable to certain
classes of jobs, and can only manage dedicated clusters or large SMP machines.
If users have both serial and parallel applications to run, they are often forced to
submit their jobs to separate systems, learn a different set of interfaces for each
one, use different tools to monitor the jobs, and so on. Moreover, the system ad-
ministration costs are increased, since the administrators must install and maintain
separate systems.

It may be difficult or impossible to have separate schedulers managing the
same set of resources. As a result, resource owners or administrators are some-
times forced to partition their resources into separate groups, one that serves par-
allel applications and one that serves serial applications. If there is an uneven
distribution of work between the two different systems, users will wait for one set
of resources while computers in the other set are idle.

1.3 The Condor solution

Condor overcomes these difficulties by combining aspects of dedicated and oppor-
tunistic scheduling into a single system. Opportunistic scheduling involves placing



jobs on non-dedicated resources under the assumption that the resources might not
be available for the entire duration of the jobs. Condor makes use of a procedure
known as checkpointing, where the computation is suspended at a fixed point and
the current job state is written out to a file[4][5]. The resulting checkpoint file can
be used to restart the application at the point in its execution when the checkpoint
was taken. Condor can insure forward progress of its jobs, even on non-dedicated
resources, by using checkpointing.

Instead of forcing administrators to partition resources, Condor manages all
resources within a single system. Users can submit a wide variety of jobs to Con-
dor, from serial to parallel jobs, including both PVM (Parallel Virtual Machine)
and MPI (Message Passing Interface) applications. This flexibility allows the user
to spend less time learning new interfaces and tools, yielding more time for doing
the research they ultimately care about. It saves time and money for the admin-
istrators who only have to maintain a single system. The unified approach also
yields high resource utilization with simple dedicated scheduling algorithms.

Dedicated scheduling was introduced in the 6.3.X development series of Con-
dor. Its initial release was version 6.3.0 (April, 2001). This release ushers in a new
phase in Condor’s history. Throughout most of its existence, Condor had only
provided opportunistic scheduling for non-dedicated resources. Now, Condor has
integrated dedicated and opportunistic scheduling into a single system.

The following sections cover the general architecture of the Condor system,
how Condor manages both dedicated and non-dedicated resources with a com-
bination of dedicated and opportunistic scheduling, why some of the traditional
problems in dedicated scheduling do not apply to this hybrid approach, and how
Condor handles various failure conditions. An exploration of future work in these
areas concludes the paper.

2 Architecture of the Condor system

Condor is a distributed batch scheduling system. It is composed of a collection
of different daemons that provide various services, such as resource management,
job management, matchmaking, and so on. The goal of Condor is to provide the
highest feasible throughput by executing the most jobs over extended periods of
time.

Condor exercises administrative control over a Condor pool. A pool is a set
of resources that all report to a single daemon called the collector. The col-
lector is the central repository of information in the Condor system. Almost
all Condor daemons send periodic updates to the collector. Each update is in
the form of a ClassAd, a data structure consisting of a set of attributes describing
a specific entity in the system. Each ClassAd can optionally specify requirements
and preferences on the entities it is looking for, much like classified advertisements
in a newspaper. Many tools and daemons perform queries against the collec-
tor to acquire information about other parts of the system. The machine where
the collector runs is referred to as the central manager.

The central manager also runs a daemon called the negotiator, which



periodically performs a negotiation cycle. This cycle is a process of matchmak-
ing, where the negotiator tries to find matches between various ClassAds, in
particular, resource requests and resource offers[6]. Once a match is made, both
parties are notified and are responsible for acting on that match.

Computational resources within the pool are managed and represented to the
system by a daemon called the startd. This daemon monitors the conditions of
the resource where it runs, publishes resource offer ClassAds, and it is responsible
for enforcing the resource owner’s policy for starting, suspending, and evicting
jobs. The policy is defined by a set of boolean expressions given in a configuration
file that control the transitions between the possible states the resource could be
in (idle, running a job, suspending the job, gracefully evicting the job, killing the
job, and so on). Resource owners can specify requirements for which users or jobs
the resource is willing to serve. Owners can also specify a rank (in an arbitrarily
complex order) for which users or jobs a resource most prefers to serve. Any
machine running a startd can be referred to as an execute machine, since it is
able to execute Condor jobs.

A user’s job is represented in the Condor system by a ClassAd. Users submit
their jobs to a daemon called the schedd. This daemon maintains a persistent job
queue, publishes resource request ClassAds, and negotiates for available resources.
After it receives a match for a given job, the schedd enters into a claiming proto-
col directly with the startd. Through this protocol, the schedd presents the job
ClassAd to the startd and requests temporary control over the resource. Once
it has claimed a given resource, the schedd performs its own local scheduling to
decide what jobs to run. Any machine running a schedd can be referred to as a
submit machine, since users are able to submit Condor jobs from that host.

Startd

Schedd

Machine 2

Startd

Schedd

Machine 1

Startd

Schedd

Machine N

Startd

Schedd

Central Manager 

Negotiator

Collector

Figure 1: Architecture of a Condor pool with no jobs running



Several things can break a claim and either create a new claim with a different
schedd, or give the resource back to the control of the startd:

1. The resource owner can start using the resource again (outside of the Condor
system). By default, Condor is configured to evict any currently running
jobs and release any claims. This situation is referred to as either eviction or
owner preemption.

2. A user with a higher priority (based on resource usage) can preempt the ex-
isting job. Once the existing job has been evicted, the schedd representing
the new user will claim the resource for itself. This process is known as
priority preemption.

3. A user or job that is ranked higher by the resource can enter the system and
request access to the resource. The startd will release the claim from
the lower-ranked entity, and grant a claim to the higher-ranked one. This
process is referred to as rank preemption.

4. The schedd can decide it no longer needs the resource and release its
claim.

To handle the low-level details of starting an application on a given resource,
the schedd spawns a shadow process. To execute an application under a startd,
the shadow contacts the startd and requests that a starter process be cre-
ated. The starter and shadow communicate with each other to handle all the
application-specific needs for staging input files, starting jobs, moving output files
when the jobs complete, and reporting the exit status of the application back to the
schedd.

The shadow also enables remote system calls for certain opportunistic jobs[5].
System calls performed by the job are trapped by a Condor library, sent over the
network to the shadow, executed locally on the submit machine, and the results
are shipped back over the network to the job. This allows remote access to files
that exist only on the local file system of the submit machine. In addition to remote
system calls, Condor provides mechanisms to transfer data files from the submit
machine to an arbitrary execute machine. This allows any job to stage input data
and retrieve its output without relying upon a shared file system or relinking the
application with Condor’s library.

The various daemons (schedd, startd, collector and negotiator)
that provide different services in the Condor system are completely independent
from each other. A given machine in a Condor pool can run any number of them,
depending on what services are needed on that machine. The only requirement is
that, by definition, only one collector and negotiator can run in a single
pool.

In addition to the daemons described above, all machines in a Condor pool
run the master daemon, which spawns any other Condor daemons a machine is
configured to run, and acts as a server for a number of remote administration tools.



Startd

Schedd

Machine 1

Startd

Schedd

Startd

Schedd

Startd

Schedd

Central Manager 

Negotiator

Collector

Machine 2 Machine N

Shadow Starter

User Job

= Process created by fork()

= Communication pathway

Figure 2: Architecture of a Condor pool with a job running

3 Condor’s dedicated scheduling

The introduction of dedicated resources and dedicated scheduling to the Condor
system created a few minor changes to the system architecture. A new version of
the schedd contains the special dedicated scheduling logic. This schedd also
performs all of the existing opportunistic scheduling services. For example a large
Beowulf cluster with a single front-end node can run the dedicated schedd on
that node and the schedd would handle both dedicated and opportunistic jobs.

Only MPI jobs require dedicated scheduling in Condor, since the PVM in-
terface can handle dynamic resource management, with nodes coming and going
from a PVM application[7]. To support MPI applications, modified versions of the
shadow and starter were needed. Because of Condor’s layered architecture,
these were the only places in Condor that had to be modified to support this new
kind of application.

3.1 Configuring a Condor pool for dedicated scheduling

To support dedicated jobs, a Condor administrator configures certain resources in
the pool to be controlled by the dedicated scheduler. In general, there is no limit
on the number of dedicated schedulers in a Condor pool. However, each dedicated
resource may only be managed by a single dedicated scheduler. Therefore, running
multiple dedicated schedulers in a single pool results in greater fragmentation of



dedicated resources. This can create a situation where jobs will not run, because
the jobs can not get needed resources. There is little benefit to having multiple
dedicated schedulers, particularly at the cost of artificial resource fragmentation.

To configure a dedicated resource under a given scheduler, the resource owner
or administrator sets a few lines in the startd’s configuration file. The resource
advertises a special attribute in its ClassAd that says which dedicated scheduler
it is willing to be managed by. The resource’s policy for starting and stopping
jobs must also be modified to always allow jobs from the dedicated scheduler
to start, regardless of machine state, and to never evict dedicated jobs once they
begin. Finally, the resource must be configured to prefer jobs from the dedicated
scheduler over all other jobs. A dedicated resource in Condor is simply configured
so that the dedicated scheduler of its choice has the highest rank. Condor’s existing
opportunistic scheduler (matchmaker) guarantees that if the dedicated scheduler
wants to claim the resource, it will always be allowed to do so, regardless of any
other conditions. Once the resource has been claimed by the dedicated scheduler,
the opportunistic scheduler ensures that no other jobs can preempt it.

It is worth noting that Condor puts no other requirements on a resource for it
to be considered dedicated. If the owners of desk-top workstations were willing
to allow their machines to be configured in this way, those workstations would
be dedicated resources in Condor, and would behave exactly like the nodes in a
Beowulf cluster.

To aid in the definition of the policy expressions, the dedicated scheduler adds
an attribute to all resource request ClassAds it generates, the Scheduler attribute.
This attribute identifies each ClassAd as a request of a particular dedicated sched-
uler. The owners of the resources can easily define separate policies for dedicated
and opportunistic jobs, simply by including two cases in each policy expression,
one case for when the Scheduler attribute identifies the request as one belonging
to the preferred dedicated scheduler, and one for if the Scheduler attribute is not
defined or points to a different scheduler.

Once a set of dedicated resources have been configured and a new schedd
is running, users are free to submit MPI jobs to the system. Once the schedd
notices MPI jobs in the queue, the dedicated scheduler logic is activated.

3.2 Making resources dedicated

If the dedicated scheduler has idle jobs to service, it will query the collector
for all resources that are configured to be under its control. The dedicated sched-
uler does its own matchmaking to find resources it could claim that will match
idle MPI jobs. Once resources are identified, a ClassAd is generated and sent to
the opportunistic matchmaker, requesting negotiation. During the next negotiation
cycle, the negotiator contacts the dedicated scheduler and performs match-
making for any idle resource requests (which are modified to include the Sched-
uler attribute described above, and to require that any resource matched with the
request must be managed by the dedicated scheduler).

Once resources are matched, the dedicated scheduler claims them and puts
them under its control. This moves the resources from the control of the oppor-



tunistic scheduler to the control of the dedicated scheduler. Once claimed in this
fashion, the dedicated scheduler can run any jobs it wants on the resource, even
dedicated jobs from a different user than the one whose job it originally negotiated
for. The key is that the resource is claimed by the dedicated scheduler itself. So
long as there are idle MPI jobs that match this resource, the dedicated scheduler
will use the resource.

If the dedicated scheduler decides that a given resource is no longer needed,
it can release its claim on that resource, thereby returning it to the opportunistic
scheduler. The resource will then be treated as any other non-dedicated resource
in the system. If more MPI jobs are submitted, the dedicated scheduler starts the
process all over again. Depending on the state of the pool, the dedicated scheduler
may be matched with the same resource, any currently running opportunistic job
would be preempted, and the resource would be claimed by the dedicated sched-
uler again.

3.3 Condor’s dedicated scheduling algorithm

Condor uses a basic scheduling algorithm for dedicated MPI jobs. A global FIFO
queue of MPI jobs across all users is maintained. At the start of a dedicated
scheduling cycle, the schedd performs a query to find all resources that either
are claimed or could be claimed for dedicated jobs. Only resources in this list will
be considered by the dedicated scheduler. Once the dedicated scheduler has the
list of resource ClassAds, it sorts them by the time they would next be available
for running a job.

The dedicated scheduler considers each job in the queue, in order. It tries to
satisfy the requirements of the job, performing its own local matchmaking proce-
dure. If the first job can be satisfied by resources that have already been claimed
but are now idle, those resources are removed from the available list, allocated to
the job, and the next job is considered. If the job at the head of the queue can not
be served by currently claimed and idle resources, the dedicated scheduler sees
if it could satisfy the job by negotiating for other resources that are currently un-
claimed, or by a combination of already claimed/idle and unclaimed resources. If
so, any resources used for the job are removed from the available list, and the next
job is considered. If the top job cannot be satisfied at all by claimed/idle and un-
claimed resources, the dedicated scheduler checks if enough dedicated resources
exist to satisfy this job. If so, the dedicated scheduler stops scheduling jobs, and
waits for its existing dedicated jobs to finish so that it can acquire enough resources
to satisfy the large job at the front of the queue. If not, the job is too big to run
(until more resources are configured as dedicated), so the scheduler skips over it
and considers the next job in the queue.

Once all scheduling decisions have been made in a given cycle, the dedicated
scheduler can begin to act on them. Any jobs that were satisfied by claimed/idle
resources are spawned. The dedicated scheduler also sends out resource request
ClassAds to the opportunistic scheduler for any unclaimed resources that were
needed. If the dedicated scheduler

By maintaining a single queue across all users, this algorithm can lead to



unfair resource allocation. If a user submits a large number of MPI jobs at the
same time, once those jobs are at the front of the queue, the user will starve all
other users until the jobs complete. This is obviously not ideal. It is an area of
future work.

4 Why some traditional problems in dedicated scheduling do not
apply to Condor

Some of the traditional problems found in dedicated scheduling do not apply to
Condor because of its unique combination of dedicated and opportunistic schedul-
ing. The following sections discuss these problems and how Condor avoids them.

4.1 Backfilling

In dedicated scheduling systems, one of the more difficult problems is what to do
with holes in the schedule. For a variety of reasons, there will inevitably be periods
of time when certain resources cannot be used by the scheduler. This fragmenta-
tion leads to poor utilization of resources and lower overall job throughput in the
system.

The traditional solution to this problem is called backfilling. While backfill-
ing can take many forms, in general, it attempts to fill holes in the schedule by
running smaller parallel jobs of lower priority in an attempt to keep the resources
utilized while the highest priority parallel job waits for enough resources to begin
execution[8][9]. However, the holes remain if there are not enough small jobs, or
if the jobs are of the wrong size and duration.

Another method for filling holes in the schedule would be to try to run serial
jobs on the empty nodes. However, most scheduling systems do not provide sup-
port for opportunistic execution of serial jobs. If the serial jobs need to run longer
than the available window in the schedule, they must either be killed, loosing the
work they have completed, or they will delay the schedule, leading to a further
reduction in utilization.

In Condor, since there is an existing infrastructure for managing non-dedicated
resources with opportunistic scheduling, any holes in the dedicated schedule may
be filled by releasing the resources the opportunistic scheduler’s control. Because
the jobs that will run on these resources are opportunistic, they are already pre-
pared, even expecting, to be preempted at any time. When these resources are
again needed for the dedicated schedule, they will be re-claimed by the dedicated
scheduler. Condor’s opportunistic scheduling system already handles this case,
just as if a desktop workstation’s owner had returned and moved the mouse or
touched the keyboard. Condor will take a checkpoint of the job, and migrate the
job to another host, or put it back in the queue if no other resources are available.
Checkpointing the opportunistic jobs ensures forward progress during backfilling.
This leads to high resource utilization, and greater overall system throughput.



4.2 Requiring users to specify a job duration

Another common problem that arises from traditional dedicated schedulers is that
users must specify an expected duration for any job they submit to the system.
Many users do not know how long their applications will run ahead of time, and
in general, it is impossible to know without actually executing the code.1

The result of this requirement is that in practice users are forced to guess how
long their programs will take. Unfortunately, there is a high price for guessing
wrong. For most schedulers, a job that exceeds its expected duration will be killed,
thereby losing all the work accomplished. Users are therefore encouraged to guess
high. However, jobs with very long durations can often wait longer in the queue
before a sufficiently large slot is available in the schedule. Some schedulers even
charge users based on expected duration, not actual usage. So, guessing too high
is also not in the user’s interests. This leaves quite a dilemma for the user.

Users of Condor do not need to guess a duration. Because Condor’s dedicated
scheduler can release or reclaim nodes at any time and still expect them to be
utilized, it does not need to make decisions far into the future. At each scheduling
cycle, Condor’s dedicated scheduler can make the best decisions possible with the
current state of all the resources under its control and the jobs in its queue. If
an idle job in the queue could run if more resources were claimed, the dedicated
scheduler can send out a ClassAd to the opportunistic scheduler to request more
resources. The dedicated scheduler does not need to know how much longer the
currently running jobs will take, since it can make all of its scheduling decisions
assuming those resources are unavailable. As resources become available, they
will be put to use for any dedicated jobs in the queue. If the job at the head of the
dedicated queue needs more resources than are currently available, any currently
claimed but idle dedicated resources can be released.

5 Condor handles failures of dedicated resources

The Condor system has been managing non-dedicated, unreliable resources for
over 10 years. All levels of Condor are designed to recover gracefully from net-
work or hardware failures, machines disappearing from the network, and other
failures. Condor’s support for managing dedicated applications is built on top of
this foundation and takes advantage of all of the existing robustness.

If a submit machine crashes, all resources claimed by its schedd will shut
down any currently running jobs. When the submit machine is brought back up,
a persistent log file of the job queue enables the system to automatically re-spawn
the jobs without user intervention. If the jobs were opportunistic, they will be
restarted from their last checkpoint file, minimizing lost computation, otherwise,
they are restarted from the beginning. The dedicated scheduler is just a special

1If you had a generic, deterministic method to decide if an application would complete at all (much
less how long it would take), you would have solved the so-called ’Halting Problem’ and proved that
P=NP, one of the longest outstanding problems in all of Computer Science.



case of the schedd, so the same failure mode is used in the event of a hardware
failure at the dedicated scheduler.

The Condor system is also resilient in the face of a hardware failure of the
central manager. Once matches are made and resources are claimed by local sched-
ulers (opportunistic or dedicated), the central manager is no longer needed for any
part of the job execution protocol. Currently running jobs would not even know
that the central manager was down. Once jobs complete, the local schedulers at-
tempt to use the resources they have claimed to service other jobs in their local
queues. This is true of the dedicated scheduler as well, since it will first try to
use resources it has already claimed to service any idle jobs in its queue. Certain
pool-monitoring tools will fail if the central manager is down, but running jobs
continue to run, and new jobs may be scheduled.

Parallel applications create their own challenges in the face of failures. If a
node in a parallel computation crashes due to a hardware failure, Condor notices
that the resource went away and shuts down the rest of the computation. Since
Condor does not yet support checkpointing of parallel applications, it must restart
the job from the beginning when enough resources are available. This is an accept-
able failure mode in the absence of checkpointing. So long as the job is re-queued
and not lost as a result of a hardware failure, the scheduling system is doing its job.

If a node crashes due to a software failure on the part of the parallel appli-
cation itself (for example, a segmentation violation in the user’s code), Condor
supports two methods to propagate the error back to the user: a log file and an
email message to the user. When users submit jobs, they specific which form of
error reporting, if any, they wish to use. In addition to notifying the user of the
error, any core files produced are shipped back to the submit machine, and the job
leaves the queue.

6 Future work

Although Condor’s approach to managing dedicated resources by a combination of
dedicated and opportunistic scheduling has advantages over traditional dedicated
schedulers, there is a considerable amount of future work that is both possible and
desired.

6.1 Incorporating user priorities into the dedicated scheduler

One of the first steps towards improving Condor’s dedicated scheduling would
be to incorporate user priorities into the system. Condor currently uses a basic
scheduling policy, with a global queue of jobs. An improvement would be to
have a separate logical queue per user, and utilize Condor’s user priority system to
determine the order in which queues were serviced. While this would not effect
overall system efficiency or throughput, it would increase fairness.

6.2 Knowing when to claim and release resources

The unique combination of opportunistic and dedicated scheduling in Condor in-
troduces a new problem: when should the dedicated scheduler claim or release its



resources? Condor currently relies on relatively simple heuristics to make these
decisions. System efficiency (and therefore, job throughput) could be enhanced by
exploring more accurate and sophisticated methods for determining the best time
to initiate these resource state changes.

6.3 Scheduling into the future using job duration information

While there are problems that arise from trying to force users to specify a dura-
tion for their dedicated jobs (described above), there are benefits that can only be
achieved by having duration information. Certain resources are only available for
a fixed period of time. Condor’s dedicated scheduler could not use these resources
to service dedicated jobs unless it knew (or at least expected) that those jobs would
complete before the resources became unavailable again.

Condor would not require users to specify a job duration. Duration informa-
tion can improve response time by allowing Condor to use resources for dedicated
jobs that would otherwise only be available for opportunistic scheduling.

6.4 Allowing a hierarchy of dedicated schedulers

The current Condor system only allows a resource to be controlled by a single
dedicated scheduler. If Condor supported job durations as described above and
was making schedules into the future, Condor could also allow a hierarchy of
dedicated schedulers to control a single resource. The dedicated scheduler at the
top of the hierarchy would have ultimate control over the resource. However, when
that scheduler decided it no longer needed the resource, instead of returning it to
the opportunistic scheduler for the indefinite future, the dedicated scheduler could
specify how long that resource should be considered available. Other dedicated
schedulers lower in the hierarchy could then claim the resource, if they could use
it within the given time constraint.

A hierarchy of dedicated schedulers would be particularly useful in a situa-
tion where multiple Condor pools are flocked together, allowing jobs to migrate
between the pools[10]2. The dedicated resources in each pool would rank their
local dedicated scheduler at the top of their hierarchy. If the resources were not
used by the local dedicated scheduler, they would allow the other dedicated sched-
ulers within the flock access. This would enable execution of parallel applications
that were larger than any of the individual pools, assuming there were sufficient
dedicated resources available.

6.5 Allowing multiple executables within the same application

Condor supports a single executable (which therefore is bound to one platform)
within a given MPI job. Users should be able to specify multiple executables
within the same job. This allows users to take advantage of resources of different
platforms within a single computation. It also allows for more complex paral-
lel architectures where not all nodes in the computation use the same executable.

2The paper referenced here is out of date. Unfortunately, no existing publications describe Condor’s
current flocking mechanism.



Many MPI applications circumvent this problem by including multiple sets of in-
structions within a single executable, conditionally executing one set based on the
unique identifier of each node in the computation.3 This solution is inefficient, as
it requires larger executables to be moved around the system, and more (unused)
data loaded into memory. Users could split these separate instruction sets into
different stand-alone executables, so that each node would only incur the cost of
bringing in the instructions it needs.

6.6 Supporting MPI implementations other than MPICH

MPICH is a widely used and portable implementation of the MPI standard, devel-
oped at Argonne National Laboratory and Mississippi State University[11][12].
While it is possibly the most used implementation of MPI, it is certainly not the
only one (for example: LAM[13], ScaMPI, MPI/Pro, and a number of vendor-
specific MPI implementations). One of the great strengths of MPI is that it is
a standard[14][15]. A single computation can use different executables, linked
against different implementations of the standard, and all nodes will be able to
communicate with each other. Many of the vendor-specific implementations pro-
vide better performance than the generic, portable implementations on the given
platform. Different implementations of MPI often use different methods for spawn-
ing the nodes, and Condor only supports the method used by MPICH.

6.7 Dynamic resource management routines in the MPI-2 standard

The de facto MPI standard (version 1.2) provides no dynamic resource manage-
ment. There are no methods for adding resources to an existing MPI computation
or for gracefully removing resources. The new version of standard, MPI-2, sup-
ports a number of dynamic resource management routines[16][17]. Unfortunately,
there are no implementations of MPI that fully support these routines at this time.
When implementations of the new standard are available, Condor will have to be
modified to support the dynamic resource management interface. MPI-2 jobs will
allow more flexibility in scheduling, including the use of non-dedicated resources.

6.8 Generic dedicated jobs

Some parallel applications that require dedicated resources do not use MPI. Cer-
tain serial applications desire access to dedicated resources. Condor could be mod-
ified to allow users to specify any job in the system as a dedicated job. This would
enable users of Condor to submit generic parallel dedicated jobs, not just applica-
tions linked against MPI. It would also allow dedicated scheduling of serial jobs
that can not be checkpointed. Dedicated scheduling of non-opportunistic serial
jobs would increase the likelihood that the jobs would execute until completion,
thereby improving overall system throughput.

6.9 Allowing resource reservations

Many users desire the ability to make future reservations on dedicated resources.
For example, a user might need to run an interactive application on a number of

3Unfortunately, MPI uses the term rank for this unique identifier, which is completely different
from the rank used in the rest of Condor to specify preferences.



dedicated resources at a certain time. Condor should be able to support reserva-
tions and ensure that no jobs are running on any of the requested resources at the
specified time. Since Condor needs knowledge of the future to support resource
reservations, job duration information is required.

6.10 Checkpointing parallel applications

Checkpointing parallel applications is a difficult task. The main challenge in sup-
porting parallel checkpointing is checkpointing the state of communication be-
tween nodes. Any data in transit between nodes is both difficult and essential to
checkpoint. Preliminary research at UW-Madison has demonstrated the ability
to checkpoint and restart MPI applications, including network state and data in
transit[18]. Other methods for checkpointing parallel applications attempt to flush
all communication pathways before checkpointing[19].

Supporting parallel checkpointing would significantly alter (and improve)
many of the scheduling problems explained above. If a parallel job can be pre-
empted without loosing all previous work, the scheduling system does not require
dedicated resources. Resources could be configured to be dedicated and Condor
would steer parallel jobs towards those resources. However, Condor could sched-
ule parallel jobs on any resources it had access to, including a combination of
dedicated and non-dedicated nodes. If Condor supported parallel checkpointing,
it could provide resource reservations without any knowledge of job duration. Fi-
nally, Condor could provide periodic checkpointing of parallel applications, which
would reduce the computational time lost in the event of hardware or software fail-
ures.

7 Conclusion

By using both desktop workstations and dedicated clusters, Condor harnesses all
available computational power in a single system. This provides a consistent in-
terface for users. Since the same resources can be used for both dedicated and
opportunistic jobs, Condor provides a high degree of system utilization. Some of
the traditional problems with dedicated scheduling are avoided by this unique com-
bination of scheduling models. After years of managing non-dedicated resources,
the Condor system is resilient in the face of many different types of hardware and
software failure. This robustness is essential for high job throughput on dedicated
resources as well, since all resources are prone to failure. With its combination
of dedicated and opportunistic scheduling, and its robustness, the Condor system
provides significant computational resources to end-users, thereby enabling better
science. There are many areas of future work relating to the interaction of dedi-
cated and opportunistic scheduling that will enhance Condor’s ability to provide
cheap, effective cycles.



References

[1] Michael Litzkow. Remote UNIX: Turning Idle Workstations into Cycle
Servers. In Proceedings of the 1987 Usenix Summer Conf., pages 381–384,
1987.

[2] Michael Litzkow & Miron Livny & Matthew Mutka. Condor - A Hunter of
Idle Workstations. In Proceedings of the 8th International Conference on
Distributed Computing Systems, pages 104–111, 1988.

[3] Jim Basney & Miron Livny. Deploying a High Throughput Computing Clus-
ter. In R. Buyya, editor, High Performance Cluster Computing, volume 1,
chapter 5. Prentice Hall PTR, 1999.

[4] Michael Litzkow & Todd Tannenbaum & Jim Basney & Miron Livny. Check-
point and Migration of UNIX Processes in the Condor Distributed Processing
System. Technical Report 1346, April 1997.

[5] Miron Livny & Jim Basney & Rajesh Raman & Todd Tannenbaum. Mech-
anisms for High Throughput Computing. SPEEDUP Journal, 11(1), June
1997.

[6] Rajesh Raman & Miron Livny & Marvin Solomon. Matchmaking: Dis-
tributed Resource Management for High Throughput Computing. In Pro-
ceedings of the Seventh IEEE International Symposium on High Performance
Distributed Computing, July 1998.

[7] A. Geist et al. PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial
for Networked Parallel Computing. Cambridge, MA, 1994.

[8] D. G. Feitelson & A. M. a. Weil. Utilization and Predictability in Scheduling
the IBM SP2 with Backfilling. In Proceedings of the 2nd International Par-
allel Processing Symposium, pages 542–546, Orlando, Florida, April 1998.

[9] Brett Bode & David M. Halstead & Ricky Kendall & Zhou Lei. The Portable
Batch Scheduler and the Maui Scheduler on Linux Clusters. In Proceedings
of the 4th Annual Linux Showcase and Conference, Atlanta, GA, October
2000.

[10] D. H. J. Epema & M. Livny & R. van Dantzig & X. Evers & J. Pruyne. A
Worldwide Flock of Condors : Load Sharing among Workstation Clusters.
Journal on Future Generations of Computer Systems, 12, 1996.

[11] W.D. Gropp & E. Lusk & N. Doss & A. Skjellum. A High-Performance,
Portable Implementation of the MPI Message Passing Interface Standard.
Parallel Computing, 22(6):789–828, September 1996.

[12] W.D. Gropp & E. Lusk. User’s Guide for mpich, a Portable Implementation
of MPI. Mathematics and Computer Science Division, Argonne National
Laboratory, 1996. ANL-96/6.



[13] Greg Burns & Raja Daoud & James Vaigl. LAM: An Open Cluster Envi-
ronment for MPI. In John W. Ross, editor, Proceedings of Supercomputing
Symposium ’94, pages 379–386. University of Toronto, 1994.

[14] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard. International Journal of Supercomputer Applications, 8(3–4):165–414,
1994.

[15] Marc Snir & Steve W. Otto & Steven Huss-Lederman & David W. Walker
& Jack Dongarra. MPI—The Complete Reference: Volume 1, The MPI Core,
2nd edition. MIT Press, Cambridge, MA, 1998.

[16] Message Passing Interface Forum. MPI2: A Message Passing Interface Stan-
dard. International Journal of High Performance Computing Applications,
12(1–2):1–299, 1998.

[17] William Gropp & Steven Huss-Lederman & Andrew Lumsdaine & Ewing
Lusk & Bill Nitzberg & William Saphir & Marc Snir. MPI—The Complete
Reference: Volume 2, The MPI-2 Extensions. MIT Press, Cambridge, MA,
1998.

[18] Victor C. Zandy & Barton P. Miller. Reliable Sockets.
http://www.cs.wisc.edu/paradyn/papers/index.html#rocks. University of
Wisconsin – Madison, 2001.

[19] G. Stellner. Cocheck: Checkpointing and Process Migration for MPI. In
Proceedings of the International Parallel Processing Symposium, pages 526–
531, Honolulu, April 1996.


