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Abstract

Consider a workload in which massively parallel tasks
that require large resource pools are interleaved with short
tasks that require fast response but consume fewer re-
sources. We aim at achieving high throughput and short
response time when scheduling such a workload over a set
of uncoordinated grids of varying sizes and performance
characteristics.

We propose the concept of a grid execution hierarchy,
where available grids are sorted according to their size,
and the execution overheads increase with the size of the
grids. We devise a scheduling algorithm for this execu-
tion hierarchy of grids by adapting the multilevel feedback
queue approach to a multi-grid environment. The algo-
rithm finds a grid of the size, availability, and overhead that
best matches a task’s resource requirements and expected
turnaround time. Our approach is inspired by the Shortest
Processing Time First policy (SPTF), in the sense that the
task’s processing demands are constantly reevaluated dur-
ing its run, so that a task is migrated to a more suitable level
of the execution hierarchy when appropriate.

We evaluate our approach in the context of the
Superlink-online system for processing genetic linkage
analysis tasks – a production system consisting of sev-
eral grids and utilizing tens of thousands of CPU hours a
month [32]. With our approach the system provides nearly
interactive response time for shorter tasks, while simultane-
ously serving throughput-oriented massively parallel tasks
in an efficient manner 1.

1 Introduction

Successful utilization of large-scale environments for
running computationally demanding tasks has motivated
scientists to adapt their applications for execution on grid
platforms. However, the vision of the grid as a virtual com-
puter of unlimited capacity is yet to materialize. Rather,

1This work is supported by the Israeli Ministry of Science and the Israel
Science Foundation.

access is often granted to multiple uncoordinated resource
pools (which we call grids) that vary significantly in their
size and performance characteristics.

For example, researchers often have access to special-
ized computational clusters of a few dozen CPUs, in ad-
dition to having a few machines dedicated to their research.
Organization-wide grids usually allow utilization of idle cy-
cles of many desktop computers and offer a total of several
thousand non-dedicated CPUs. National and international
grids, which may include several supercomputing centers,
typically scale up to tens of thousand CPUs [3]. Finally,
SETI@HOME-like communities [6] can potentially harvest
cycles from hundreds of thousands of CPUs.

We aim at integrating all the grids accessible to a re-
searcher into a single system that will execute a stream of
tasks having vastly different computational requirements.
We consider divisible load tasks, which can be divided and
sub-divided into any number of asynchronous sub-tasks,
called jobs. The system receives a stream of such tasks,
where the number of operations each task has to perform,
called the task complexity, is unknown, although its dis-
tribution is strongly biased towards lower complexity (or,
shorter) tasks. The tasks in the task stream may have vastly
different complexities, imposing a mixed workload on the
executing environment. To achieve reasonable turnaround
time, e.g, a few minutes for the shorter tasks and a few days
for those of higher complexity, the appropriate paralleliza-
tion level for a task is dictated by the task’s complexity.

An important factor in the performance of a multi-grid
system is the choice of a grid for task execution. While the
number of CPUs in a grid is critical for obtaining high per-
formance for higher complexity massively-parallel tasks,
the response time for shorter tasks depends strongly on the
execution overheads of the chosen grid.

Such overheads may vary significantly in different grids.
While smaller grids are usually used exclusively by a small
group of researchers and employ dedicated resources, larger
grids are typically shared by hundreds or thousands of users,
providing limited quality of service guarantees and being
more vulnerable to attacks and failures. In fact, in the com-
mon case, overhead and availability seem to trade with the
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grid size. We identify five sources of overheads which com-
monly increase the cost of running a task on larger grids:

• Slow and unreliable WAN connections due to geo-
graphic and organizational dispersion.

• Complicated resource management due to a large num-
ber of resources to be managed. Sometimes (as in
EGEE [3]) a task will pass through several resource
brokers and queue managers until it is assigned physi-
cal resources.

• Enforcement of rigid policies due to a large number of
users (hundreds or thousands), making it hard for an
individual user to improve her priority and gain access
to more resources.

• Extensive security mechanisms such as authorization,
authentication, and data encryption.

• High volatility of resources due to frequent occasional
failures and task evictions in favor of higher priority
users.

In the common case, these considerations result in reduced
overheads for scheduling, invocation, and execution on
smaller grids, allowing for more predictable execution and
faster response. Larger grids, however, are usually tuned
to provide high throughput, sometimes at the expense of
higher turnaround times and less responsiveness.

The problem of using multi-grid environments can be
solved by unifying all available grids into a large, flat grid,
managed by one of the popular meta-schedulers [1, 4]. This
solution, which is common in large-scale grid environments
such as EGEE [3], typically uses a first-come first-served
(FCFS) policy for a given user: tasks are opportunistically
scheduled for execution on available resources that may re-
side at several different grids. However, this solution may
result in all available resources being occupied by an early-
arrived demanding task, thus delaying the execution of late
arrivers and degrading system response for short tasks.

In order to handle mixed workloads, many deployments
use a natural extension of the flat approach: short tasks are
prioritized by assignment to different FCFS queues [29].
If a high complexity task occupies all available resources,
some of them will be relinquished in favor of short higher-
priority tasks. However, this approach assumes a priori
knowledge of task complexity.

Further extension of the flat approach, similar to the mul-
tilevel feedback queue (MQ) [26], does not require knowl-
edge of task complexity. It schedules every task at the high-
est priority queue and moves it to a lower priority queue if
the task fails to complete within the queue time limit. In
this way, a task will end up being assigned the correct prior-
ity according to its complexity. However, high complexity

tasks may still be assigned to low-overhead grids, leaving
only high-overhead resources for short tasks, which may
result in unacceptable turnaround times.

In this paper we propose to combine MQ with a new
concept of the grid execution hierarchy. All available grids
are sorted according to their size and overhead: upper levels
of the hierarchy include smaller grids with faster response
time, whereas lower levels consist of one or more large-
scale grids with higher execution overhead. A mixed work-
load task stream is scheduled on the hierarchy, so that each
task is executed at the level that matches the task’s complex-
ity. As the complexity increases, so do the computational
requirements and the execution overhead that can be toler-
ated. Consequently, the task to be executed will be placed
at a lower level of the hierarchy.

A task is first placed at the highest level of the hierarchy,
as its complexity is not known upon arrival. If a task fails
to complete within the time limit of that level, it is migrated
to a lower level of the hierarchy where more resources are
available. This process continues until the last hierarchy
level is reached or the task terminates.

One may wonder as to the reason for searching for the
execution level starting from the top of the hierarchy. In-
deed, the proper execution level for a given task is easy
to determine if the task complexity is simple to compute.
However, for the important class of applications considered
in this paper, even estimating task complexity is in itself
a demanding computational problem. Applications in this
class include constraint processing, Bayesian networks in-
ference, and other NP-hard problems, where task complex-
ity estimation is NP-hard [16]. For such applications there
exist heuristic algorithms that yield an upper bound on the
task complexity, whose precision improves the longer they
execute [20]. In our grid execution hierarchy framework,
task complexity is reassessed at each level prior to the ex-
ecution. If the complexity is within the queue complex-
ity range, the task is executed at that level; otherwise it is
moved to a lower level. The lower the level, the greater the
amount of resources allocated for estimating more precisely
its complexity, resulting in a better matched grid size.

The characteristics of our approach are highlighted in
Table 1, where results (averaged over several attempts) of
running two tasks, submitted one after another, are given: a
long task of approximately six hours, parallelized into 3000
jobs and executed on a large Condor pool, and a short task
of approximately thirty seconds on a single CPU. The tasks
are scheduled using either MQ or FCFS. The grids are or-
ganized either as a large pool containing all resources (flat),
or as a hierarchy (H). Obviously, turnaround time for the
longer task is approximately the same for all four combina-
tions of scheduling algorithm and system organization. In
contrast, the turnaround time for the shorter task is affected
by the higher priority it is assigned by MQ, and is further
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FCFS FCFS+H MQ MQ+H
Long task 6.2h 6.4h 6.1h 6.3h
Short task 4.7h 4.2h 3.5m 44s

Table 1. Results of runs in multiple schedul-
ing scenarios

improved by hierarchical organization, which ensures its as-
signment to highly responsive resources.

We evaluate the grid-hierarchy scheduling algorithm in
the context of Superlink-online, a production system which
assists geneticists worldwide in analyzing experimental re-
sults through genetic linkage analysis [32]. Superlink-
online utilizes about 2700 CPUs located in Condor pools
at the Technion in Haifa, and at the University of Wis-
consin in Madison. Tasks, submitted via an Internet por-
tal, go through complexity estimation, parallelization, and
scheduling on the grids comprising the system.

The analysis of the traces of this production system
shows that the proposed grid-hierarchy scheduling algo-
rithm is able to distinguish tasks of different complexities,
and assign them to a grid of appropriate power and over-
head. Consequently, even when the system is overloaded
with tasks of high complexity, it is still able to support fast,
almost interactive turnaround times for short tasks, and rea-
sonable completion times for medium complexity tasks.

The rest of the paper is organized as follows. In the next
section we describe the model of the execution environ-
ment and the expected workload. We then present the grid-
hierarchy scheduling algorithm, followed by implementa-
tion details of the production system with which this algo-
rithm is evaluated. Our evaluation is based on the statistics
for about 2300 tasks submitted to the Superlink-online sys-
tem between June and December 2005 by users worldwide.
We conclude with an overview of the related research and a
discussion of further research.

2 Model

In this section we describe the platform, application and
submission models.

2.1 Platform model

Grids are managed by local workload and resource man-
agement software that cannot be changed or reconfigured
in any way. Jobs are submitted for execution in a standard
way, through a front-end submission node, and are subject
to local policies of the grid. No communication is assumed
between the grid resources and the outside world except for
submission nodes, due to firewalls separating uncoordinated

grids. Faults, crashes, and other related events are handled
by the local resource management software.

2.2 Application model

Tasks can be divided and sub-divided into any number of
independent asynchronous jobs (divisible load tasks [12]).
Tasks are parallelized using the master-worker paradigm,
where a single master dynamically schedules tasks to mul-
tiple workers (see, for example, [22]). Migration of master-
worker tasks across grids is supported via checkpoint/restart
operation of the master component alone. Namely, the mas-
ter preserves the results of previously terminated jobs as
well as the state of its work queue across invocations. Al-
though complete support for checkpoint/restart is desirable,
this partial functionality is usually sufficient and more prac-
tical.

2.3 Submission model

Tasks are submitted independently, forming an incoming
stream. The task complexity distribution is heavily biased
towards short tasks (e.g.,[18, 19, 29]). Statistics gathered
from our Superlink-online [32] production system for 2300
tasks show a similar bias (see Figure 7).

Upon submission, task complexity is unknown. How-
ever, an upper bound on task complexity can be computed
by a procedure whose accuracy improves together with the
amount of resources allocated for its execution, as is the
case in the context of genetic linkage analysis (e.g., [20]).

3 Grid-hierarchy scheduling algorithm

The algorithm has two complementary components: or-
ganization of multiple grids as a grid execution hierarchy
and procedures for scheduling tasks on this hierarchy.

3.1 Grid execution hierarchy

The purpose of the execution hierarchy is to classify
available grids according to their performance characteris-
tics, so that resources at each level of the hierarchy pro-
vide the best performance for tasks of a specific complexity
range. In other words, a task of any complexity has a level
in the hierarchy which best matches its needs in terms of
overhead and available resources.

The upper levels of the hierarchy include smaller grids
with faster response time, whereas lower levels consist of
one or more large-scale grids with higher execution over-
head. The number of levels in the hierarchy depends on the
expected distribution of task complexities in the incoming
task stream, as explained in Section 5.
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Each level of the execution hierarchy is associated with a
set of one or more queues. Each queue is connected to one
or more grids at the corresponding level of the hierarchy,
allowing submission of jobs into these grids. A task arriv-
ing at a given hierarchy level is enqueued into one of the
queues. It can be either executed on the grids connected to
that queue (after being split into jobs for parallel execution),
or migrated to another queue at the same level by employing
simple load balancing techniques, described later. If a task
does not match the current level of the execution hierarchy,
as determined by the scheduling procedure presented in the
next subsection, it is migrated to a queue at the next lower
level of the hierarchy.

3.2 Scheduling tasks in a grid hierarchy

The goal of the scheduling algorithm is to find the proper
execution hierarchy level for a task of a given complexity
with minimum overhead. Ideally, if we knew the complex-
ity of each task and the performance of each grid in the sys-
tem, we could compute the execution time of a task on each
grid, placing that task on the one that provides the short-
est execution time. In practice, however, neither the task
complexity nor the grid performance can be determined pre-
cisely. Thus, the algorithm attempts to schedule a task using
approximate estimates of these parameters, dynamically ad-
justing the scheduling decisions if these estimates turn out
to be incorrect.

We describe the algorithm in steps, starting with the sim-
ple version, which is then enhanced.

3.2.1 Simple MQ with grid execution hierarchy

Each queue in the system is assigned a maximum time that
a task may stay in the queue (queueing time) Tq , and a max-
imum time that a task may execute in the queue (execution
time) Te, with Te ≤ Tq

2. The queue configured to serve
the shortest tasks is connected to the highest level of the ex-
ecution hierarchy, the queue for somewhat longer tasks is
connected to the next level, and so on.

A task is assumed to be short and thus first submitted to
the top level queue. Indeed, while nothing is known about
its complexity upon submission, recall that the complexity
distribution in the task stream is biased toward shorter tasks.
If any of the queue limits is violated, a task is preempted and
migrated to the next lower queue (the one submitting tasks
to the next hierarchy level).

Such an algorithm ensures that any submitted task will
eventually reach the hierarchy level that provides enough
resources for longer tasks and fast response time for shorter

2For simplicity we do not add the queue index to the notations of queue
parameters, although they can be set differently for each queue.

tasks. In fact, this is the original MQ algorithm applied to a
grid hierarchy.

3.2.2 Avoiding hierarchy level mismatch

The simplistic scheduling algorithm above fails to provide
fast response to short tasks if a long task is submitted to the
system prior to a short one. Recall that the original MQ
is used in time-shared systems, and tasks within a queue
are scheduled using preemptive round-robin, thus allowing
fair sharing of the CPU time [26]. In our case, however,
tasks within a queue are served in FCFS manner (though
later tasks are allowed to execute if the task at the head of
the queue does not occupy all available resources). Conse-
quently, a long task executed in a queue for short tasks may
make others wait until its own time limit is exhausted.

Quick evaluation of the expected waiting and running
times of a task in a given queue can prevent the task from
being executed at the wrong hierarchy level. This is ac-
complished as follows. Each queue is associated with a
maximum allowed single task complexity Ce and a max-
imum queue workload complexity Cq , where queue work-
load complexity is defined as the sum of the complexities of
the tasks in the queue. The queue complexity limits Ce and
Cq are derived from the queue time limits Te and Tq by op-
timistically assuming linear speedup, availability of all re-
sources at all times, and resource performance equal to the
average in the grid. The optimistic approach seems reason-
able here, because executing a longer task in an upper level
grid is preferred over moving a shorter task to a lower level
grid, which could result in unacceptable overhead. The fol-
lowing naive relationship between a complexity limit C and
a time limit T reflects these assumptions:

C = φ(T ) = T · (N · P · β), (1)

where N is the maximum number of resources that can be
allocated for a given task, P is the average resource perfor-
mance, and β is the efficiency coefficient of the application
on a single CPU, defined as the portion of CPU-bound op-
erations in the overall execution. By Eq. 1, Cq = φ(Tq) and
Ce = φ(Te).

The procedure ProcessNewTask in Figure 1 detects the
tasks which exceed the queue complexity range and triggers
their migration to a lower queue.

The procedure comprises three steps. The first step is
to detect the queue overload, namely, whether the arriving
task violates Tq. We denote by Q the estimate of the current
queue workload complexity, as computed by the procedure
EnforceQueueLimits, which is described later. We denote
by C the current estimate of the task’s complexity (C can
be unknown for new tasks). If the violation is detected, the
algorithm triggers an overload migration policy, which mi-
grates the incoming task to the next queue or rejects it with-
out estimating its complexity.
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1. Overload detection
if (Q > Cq) then call MigrationPolicy(overload)

2. Task complexity estimation
if (C is unknown or C > Ce) then
C ← {run complexity estimation for up to αTe }

3. Migration or invocation
if (C > Ce) then call
MigrationPolicy(complexity mismatch)
else leave for invocation in the current queue

Figure 1. Procedure ProcessNewTask

In the second step the task complexity is estimated 3. Re-
call that we assume the availability of a complexity estima-
tion procedure which produces an upper bound on the task’s
complexity. The longer this procedure executes, the more
accurate is the bound. Allocating a small portion α < 1 of
Te for complexity estimation often allows quick detection
of a task that does not fit in the queue. However, the upper
bound on the task’s complexity might be much larger than
the actual value. Consequently, if the task is migrated di-
rectly to the level in the hierarchy that serves the complexity
range in which this estimate belongs, it may be moved to too
low a level, thus decreasing the turnaround time. Therefore,
the task is moved to the next level, where the complexity
estimation algorithm is given more resources and time to
execute, yielding a more precise estimate.

The final step ensures that tasks of complexities that are
above Ce and would consequently fail to terminate within
Te, are not invoked in the queue. The complexity mis-
match migration policy is triggerred for these tasks, migrat-
ing them to the next lower queue, unless the queue is at the
lowest hierarchy level, in which case the task is rejected.

3.2.3 Enforcing queue limits

Using the procedure ProcessNewTask is insufficient to en-
sure that queue limits are not violated. The main reason for
a task to stay in the queue longer than initially predicted is
that the grid performance estimates may turn out to be too
optimistic, as they do not account for the possible fluctu-
ations of the number of resources due to failures, changes
in grid load, and other factors. Thus, the queue time lim-
its must be enforced in a manner similar to that used in the
original MQ algorithm, by monitoring the queue and mi-
grating tasks which violate the queue limits. Furthermore,
because the complexity of remaining computations for a
given task can be determined, tasks which are very likely to

3The complexity estimation can be quite computationally demanding
for larger tasks, and in which case it is executed using grid resources.

For every task j, starting from the head of the queue

1. Detect actual violation of queue limits
if ( tj

q > Tq or tj
e > Te) then call

MigrationPolicy(overdue)
2. Detect future violation of queue limits

(a) Obtain complexity of total remaining computations C

(b) Check if enough time remains to complete the task
if (C > φ(Te − tj

e) or C > φ(Tq − tj
q))

then call MigrationPolicy(task potential overdue)
(c) Check if enough time remains with the preceding tasks

if (Q + C > Cq) then call
MigrationPolicy(queue potential overdue)
else Q = Q + C

return Q

Figure 2. Procedure EnforceQueueLimits

violate the queue limits in the future can be detected. Early
detection of such tasks increases the chance that later tasks
will complete without migration to lower levels.

This is accomplished by the EnforceQueueLimits pro-
cedure (Figure 2). Each task j stores its queuing time tj

q

(the time from arrival to the queue until termination) and its
execution time tje (the time from the moment the first job is
started by the grid middleware until termination).

The procedure EnforceQueueLimits consists of three
steps. The first step determines the tasks which actually
violate the queue limits, triggering the overdue migration
policy, which preempts and migrates these tasks to the next
lower queue or terminates them if this is the lowest level. If
a task is the only task in the queue, its migration (termina-
tion) is delayed until another task arrives.

The second step detects tasks which are likely to violate
the queue limits. While such tasks have not exhausted their
queue limits yet, they will likely be preempted in the future
due to too many remaining computations (2.b).

The third step (2.c) prevents accumulation of tasks in the
queue if the tasks at the head of the queue are progressing
too slowly and causing later tasks to exhaust their queue
limit.

Note that the procedure intentionally distinguishes the
overdue and task (queue) potential overdue migration poli-
cies (2.b, 2.c), to support different system behavior in each
case. In the evaluation section we show how disabling these
policies affects the queue performance.
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3.3 Handling multiple grids at the same
level of the execution hierarchy

The problem of scheduling in a configuration where mul-
tiple grids are placed at the same level of the execution hi-
erarchy is equivalent to the well-studied problem of load
sharing in multi-grids. It can be solved in many ways, in-
cluding using the available meta-schedulers, such as [1], or
flocking [33]. If no existing load sharing technologies can
be deployed between the grids, we implement load sharing
as follows.

Our implementation is based on a push migration mecha-
nism (such as in [18]) between queues, where each queue is
connected to a separate grid. Each queue periodically sam-
ples the availability of resources in all grids at its level of
the execution hierarchy. This information, combined with
the data on the total workload complexity in each queue, al-
lows the expected completion time of tasks to be estimated.
If the current queue is considered suboptimal, the task is
migrated. Conflicts are resolved by reassessing the migra-
tion decisions at the moment the task is moved to the target
queue. Several common heuristics are implemented to re-
duce sporadic migrations that may occur as a result of fre-
quent fluctuations in grid resource availability [35]. Such
heuristics include, among others, averaging of momentary
resource availability data with the historical data, prevent-
ing migration of tasks with a small number of pending exe-
cution requests, and others.

4 The application

We have implemented the grid-hierarchy scheduling al-
gorithm in an online distributed system for execution of ge-
netic linkage analysis tasks, called Superlink-online [32].
The tasks, submitted via the Internet by geneticists from
national and international medical research institutions, are
scheduled and parallelized by the system for execution in
the distributed environment.

4.1 Genetic linkage analysis

Genetic linkage analysis is a statistical tool used by ge-
neticists to facilitate the process of identification of disease-
provoking genes [30]. It is a well-established technique em-
ployed by geneticists in everyday practice. Successful iden-
tification of the affected genes helps provide better preven-
tion and treatment for a disease, and reveals the functional
characteristics of genes.

Performing genetic linkage analysis can be represented
as the problem of computing an expression of the form

∑

x1

∑

x2

. . .
∑

xn

m∏

i=1

Φi(Xi), (2)

where X = {x1, x2, . . . , xn|xi ∈ N} is a set of non-
negative discrete variables, Φi(Xi) is a function N

k → R

from the subset Xi ⊂ X of these variables of size k to the
reals, and m is the total number of functions to be multi-
plied. Functions are specified by a user as an input. For
more details we refer the reader to [21, 32].

4.2 Serial algorithm

The problem of computing Eq. 2 is known to be NP-
complete [13]. One possible algorithm for computing this
expression is called variable elimination [15].

The complexity of the algorithm is fully determined by
the order in which variables are eliminated. Finding an
optimal elimination order is NP-complete [7]. A close-to-
optimal order can be found using the stochastic greedy al-
gorithm proposed in [20]. The algorithm can be stopped
at any point, and it produces better results the longer it
executes, converging faster for smaller problems. The al-
gorithm yields a possible elimination order and an upper
bound on the problem complexity, i.e., the number of oper-
ations required to carry out the computations if that order is
used. It is this feature of the algorithm that is used during
the scheduling phase to quickly estimate the complexity of
a given problem prior to execution.

4.3 Parallel algorithm and its execution

The algorithm for finding an elimination order consists
of a large number of independent iterations, and is trivially
parallelizable by distributing them over different CPUs us-
ing the master-worker paradigm.

Parallelization of the variable elimination algorithm also
fits the master-worker paradigm and is performed as fol-
lows. We represent the first summation over x1 in Eq.2 as
a sum of the results of the remaining computations, per-
formed for every value of x1. This effectively splits the
problem into a set of independent subproblems having ex-
actly the same form as the original one, but with the com-
plexity reduced by a factor approximately equal to the num-
ber of values of x1. We use this principle recursively to cre-
ate subproblems of a desired complexity. Each subproblem
is then executed independently, with the final result com-
puted as the sum of all partial results.

Parallel tasks are executed in a distributed environment
via Condor [33], which is a general purpose distributed
batch system, capable of utilizing idle cycles of thousands
of CPUs. Condor hides most of the complexities of job in-
vocation in an opportunistic environment. In particular, it
handles job failures that occur because of changes in the
system state. Such changes include resource failures, or a
situation in which control of a resource needs to revert to its
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owner. Condor also allows resources to be selected accord-
ing to the user requirements via a matching mechanism.

There are three stages in running master-worker applica-
tions in Condor: the parallelization of a task into a set of in-
dependent jobs, their parallel execution via Condor, and the
generation of final results upon their completion. In our im-
plementation, this flow is managed by the Condor flow exe-
cution engine, called DAGman, which invokes jobs accord-
ing to the execution dependencies between them, specified
as a directed acyclic graph (DAG). The complete genetic
linkage analysis task comprises two master-worker applica-
tions, namely, parallel ordering estimation and parallel vari-
able elimination. To integrate these two applications into a
single execution flow, we use an outer DAG composed of
two internal DAGs, one for each parallel application.

DAGman is capable of saving a snapshot of the flow
state, and then restarting execution from this snapshot at
a later time. We use this feature for migration of a task to
another queue as follows: the snapshot functionality is trig-
gered, all currently executing subtasks are preempted, the
intermediate results are packed, and the task is transferred
to another queue where it is restarted.

5 Deployment of Superlink-online

The current deployment of the Superlink-online portal is
presented in Figure 3.

We configure three levels of the execution hierarchy, for
the following reasons. About 60% of the tasks take a few
minutes or less, and about 28% take less than three hours,
as reflected by the histogram in Figure 7. This suggests that
two separate levels, Level 1 and Level 2, should be allo-
cated for these dominating classes, leaving Level 3 for the
remaining longer tasks. Yet, the current system is designed
to be configured with any number of levels to accommodate
more grids as they become available.

Each queue resides on a separate machine, connected to
one or several grids. Utilization of multiple grids via the
same submission machine is enabled by the Condor flock-
ing mechanism, which automatically forwards job execu-
tion requests to the next grid in the list of available (flocked)
grids, if these jobs remain idle after previous resource allo-
cation attempts in the preceding grids.

Queue Q1 is connected to the dedicated dual CPU server
and invokes tasks directly without parallelization. Queue
Q2 resides on a submission machine connected to the flock
of two Condor pools at the Technion. However, due to the
small number of resources at Q2, we increased the through-
put at Level 2 of the execution hierarchy by activating load
sharing between Q2 and Q3, which is connected to the flock
of three Condor pools at the University of Wisconsin in
Madison. The tasks arrive to Q3 only from Q2. Queue Q4
is also connected to the same Condor pools in Madison as

Figure 3. Superlink-online deployment

Q3, and may receive tasks from both Q2 and Q3.
In fact, Q3 exhibits rather high invocation latencies (as

can be observed from the overhead analysis in Figure 6),
and does not fit Level 2 of the execution hierarchy well. Al-
ternatively, Q3 could have been set as an additional level
between Q2 and Q4, and the queue time limit of Q2 could
have been adjusted to handle smaller tasks. However, be-
cause both queues can execute larger tasks efficiently, such
partitioning would have resulted in unnecessary fragmen-
tation of resources. Migration allows for a more flexible
setup, which takes into account load, resource availability
and overheads in both queues, and moves a whole task from
Q2 to Q3 only if this yields better task performance. Typ-
ically, small tasks are not migrated. However, larger tasks
are migrated, as usually benefit from execution in a larger
grid as they are allocated more execution resources (see Ta-
ble 3). This configuration results in better performance for
smaller tasks than does flocking between these two grids, as
it ensures their execution on the low-overhead grid.

To ensure that larger tasks of Q4 do not delay smaller
tasks of Q3, jobs of tasks in Q3 are assigned higher priority
and may preempt jobs from Q4. Starvation is avoided via
internal Condor dynamic priority mechanisms [2].

The queue constraints Tq and Te are configured as de-
tailed in Table 2. The intuition behind the current config-
uration is as follows. The average time for allocation of
a single CPU in the grid attached to Q2 is about 20 sec-
onds. Thus, tasks arriving to this queue should be about ten
times longer in order for the overhead not to dominate their
performance. Consequently, the tasks below 200 seconds
should be served in the previous queue, resulting in Te = 3
minutes for Q1. Values of Tq are set to prevent tasks from
being accumulated in queues, as the users prefer the tasks
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Queue Tq

(min)
Te

(min)
N P

(KFlops)
Q1 6 3 2 817477
Q2 320 160 100 775251
Q3 160 160 500 649505
Q4 2880 2880 500 649505

Table 2. Parameters: Tq– queue waiting time
limit, Te– queue execution time limit, N– max-
imum available CPUs for a single user, P—
average performance of computers in grid

to be rejected rather than delayed. We restrict the allowed
queue length to up to two tasks of maximum duration for
Q1, up to two tasks in Q2, and only one task of Q3 and Q4.

The maximum number of available CPUs for a single
user is smaller than the total number of resources in the cor-
responding grids. Out of 200 CPUs in the Technion Condor
pools, only 100 satisfy the minimum memory requirements
of the application. For the Madison Condor pool, the limit
of 500 jobs is due to the recommended value of the max-
imum number of running jobs concurrently handled by a
single submission machine. More jobs cause severe over-
load of the submission machine and thus are avoided.

6 Results

We analyzed the traces of 2300 tasks, submitted to the
Superlink-online system via Internet by users worldwide for
the period between the 1st of June and the 31st of December
2005. During this time, the system utilized about 460,000
CPU hours (52.5 CPU years) over all Condor pools con-
nected to it (according to the Condor accounting statistics).
This time reflects the time that would have been spent if all
tasks were executed on single CPU. About 70% of the time
was utilized by 1971 successfully completed tasks. Another
3% was wasted because of system failures and user-initiated
task removals. The remaining 27% of the time was spent
executing tasks which failed to complete within the queue
time limit of Q4, and were forcefully terminated. However,
this time should not be considered as lost since users were
able to use partial results. Still, for clarity, we do not include
these tasks in the analysis.

6.1 Utilization of the execution hierarchy

We compared the total CPU time required to compute
tasks by each level of the execution hierarchy relative to the
total system CPU consumption by all levels together. As
expected, the system spent most of its time handling the
tasks at Level 3, comprising 82% of the total running time
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82

Level 1 Level 2 Level 3
Execution hierarchy

% total tasks
% total system CPU time

Figure 4. Portion of tasks handled by each
level of the hierarchy (first column) versus
portion of the overall system CPU time uti-
lized by each level (second column)
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Figure 5. Average accumulated time (from ar-
rival to termination) of tasks in each queue

of the system (see Figure 4). The tasks at Level 2 consumed
only 17.7% of the total system bandwidth, and only 0.3%
of the time was consumed by the tasks at Level 1. If we
consider the total number of tasks served by each level, the
picture is reversed: the first two levels served significantly
more tasks than the lower level. This result proves that the
system was able to provide short response time to the tasks
which were served at the upper levels of the hierarchy.

This conclusion is further supported by the graph in Fig-
ure 5, which depicts the average accumulated time of tasks
in each queue, computed from the time a task is submitted
to the system until it terminates. This time includes accu-
mulated overheads, which are computed by excluding the
time of actual computations from the total time. As pre-
viously, the graph shows only the tasks which completed
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successfully. Observe that very short tasks which require
less than three minutes of CPU time and are served by Q1
stay in the system only 72 seconds on average regardless of
the load in the other queues.This is an important property of
the grid-hierarchy scheduling algorithm.

The graph also shows average accumulated overhead for
tasks in each queue, which is the time a task spent on any
activity other than the actual computations.

The form of the graph requires explanation. Assuming
a uniform distribution of task runtimes and availability of
an appropriate grid for each task, the task accumulated time
is expected to increase linearly towards lower levels of the
hierarchy. However in practice these assumptions do not
hold. There are exponentially more shorter tasks requiring
up to 3 minutes on single CPU (see Figure 7). This in-
duces a high load on Q1, forcing short tasks to migrate to
Q2 and thus reducing the average accumulated time of tasks
in Q2. This time is further reduced by the load sharing
between Q2 and Q3, which causes larger tasks to migrate
from Q2 to Q3. Thus, shorter tasks are served by Q2, while
longer ones are executed in Q3, resulting in the observed
difference between the accumulated times in these queues.
To explain the observed steep increase in the accumulated
time in Q4, we examined the distribution of running times
in this queue. We found that shorter tasks (while exceed-
ing Q3’s allowed task complexity limit) were delayed by
longer tasks that preceded them. Indeed, over 70% of the
overhead in that queue is due to the time the tasks were de-
layed because of other tasks executing in that queue. This
delay is a result of disabling the potential overdue migra-
tion policy in Q4, which is enabled in all other queues.
Tasks in Q4 are allowed to run until they actually violate
the queue time limits in order to allow generation of par-
tial results, which are valuable in genetic linkage analysis
applications. Thus, the queuing times of shorter tasks arriv-
ing to Q4 increase, resulting in longer tasks dominating the
accumulated time. Availability of additional grids for the
execution of higher complexity tasks would allow for the
queueing and turnaround time to be reduced.

6.2 Overhead distribution in queues

Figure 6 provides a more detailed view of the types of
overhead in each queue. This includes the invocation and
control overheads incurred by DAGman as well as the time
spent on complexity estimation, migration, and waiting for
Condor to allocate resources. This last parameter is com-
puted as the time from which the first job is submitted to
the time when Condor starts executing it.

The major overhead of the tasks in Q1 is due to complex-
ity estimation (11 seconds). In the initial implementation, a
task was executed without complexity estimation, but pre-
empted if it turned out to be a long task. However, since

Q1 Q2 Q3 Q4Q2
Queue

0

5

10

15

20

25

30

%
To

ta
l t

im
e 

in
 sy

ste
m

Condor evictions
Condor queueing
Local queueing
Complexity estimation
Migration
Condor DAGman

Figure 6. Overhead distribution in different
queues

the tasks in our system are often submitted in bursts, this
resulted in higher load on Q1 and delays for short tasks.

The task flow is managed via DAGman, the implemen-
tation of which carries its own 4 seconds, because DAG-
man sometimes requires few seconds to detect termination
of jobs in the DAG. Note that Q1 invokes tasks locally, and
thus does not suffer any Condor-related overheads.

Queues Q2 and Q3 serve tasks of about the same size
and thus should exhibit comparable overheads. Indeed, the
overheads due to DAGman and complexity estimation are
almost equal, with the latter being slightly less in Q2 due to
the availability of faster CPUs (see Table 2). However, Q3
shows significantly higher overheads than Q2 due to long
Condor queueing times, reaching several minutes on aver-
age, versus 20 seconds on average for Q2.

Q4 shows the least overheads (3.5%) in terms of com-
plexity estimation and waiting time in Condor queues, rela-
tive to the average task execution time in that queue. How-
ever, as was previously explained, insufficient resources
caused some of the tasks to be delayed by the presence of
long-running tasks that preceded them in the queue. This
resulted in long delays due to local queueing.

An important factor in the overheads of Q3 and Q4 is
the volatility of grid resources, namely, the loss of com-
putations due to evictions. We note that this overhead is
significantly higher for these queues, connected to the Con-
dor pool at UW Madison, than for Q2, in which tasks are
submitted to the Technion’s small grid.

The graph in Figure 6 shows that in all queues, the over-
head of the grid-hierarchy scheduling algorithm and its im-
plementation does not exceed 20% of the total task time in
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Figure 7. Actual distribution of tasks among
different levels of hierarchy versus their ex-
pected duration. Ideally, each column would
have a single level color.

the system even for very short tasks, and significantly less
for longer ones, which is a reasonable trade-off for obtain-
ing short response times.

6.3 Distribution of tasks in levels

Optimally, a task should be directly invoked at the best
level in the hierarchy, acquiring the maximum possible re-
sources at that level (which exactly matches our optimistic
assumption in Eq. 1). Thus, we call expected task dura-
tion the time it would have taken the task to complete if it
was immediately given the resources of the best matching
level of the hierarchy upon entering the system. Figure 7
shows the distribution of the expected task durations, de-
rived from their actual exact complexity, and the execution
level in the hierarchy where these tasks were executed in the
real system. Ultimately, each class of tasks is supposed to
be handled by a level of the hierarchy matching its real com-
plexity. However, about 11% of the tasks that are expected
to be processed by Level 1 of the hierarchy are migrated
and executed at Level 2. Further investigation revealed two
reasons: 1) high load in the queue Q1 of Level 1, result-
ing in automatic offloading of tasks to Q2; 2) too loose an
upper bound on the complexity produced at the first stage.
As opposed to Level 1, Level 2 performs well for all jobs
with expected duration below its time limit, with only few
longer tasks moved to Level 3. We found that these tasks
were initially invoked at Level 2, but were later moved due
to momentary Condor failures. These failures resulted in
low availability of resources and caused the tasks to be pre-
empted in accordance with the potential overdue migration
policy.

Average Q2 Q3 Q4
Volatility (%of runtime) 1 4.5 7
Volatility (%of submitted
tasks)

1 7 14

Number of allocated re-
sources per task (absolute)

55 81.7 141

Number of allocated re-
sources per task (% of re-
quests)

50 54 9

Number of jobs per task 93 194 1600
Job duration (min) 9.4 13.3 15.3

Table 3. Resource and task properties in dif-
ferent queues

6.4 Level of parallelism and volatility

Running parallel tasks in a grid environment is compli-
cated by the inherent volatility of the resources. A job can
be evicted at any point of execution and then restarted on
another resource, either from the beginning or from the last
checkpoint, if such functionality is supported. Jobs in our
application do not support checkpointing, and thus were
shortened to minimize the overhead due to evictions.

Table 3 shows the effect of resource volatility on the per-
formance of our tasks in each queue. We considered only
parallel tasks, namely, those which consisted of multiple
jobs, and the values are averaged over all tasks in a given
queue. We found that for a task running in the Technion
Condor pool, about 1% of the task’s running time is lost
due to evictions (row 1), and 1% of its jobs are evicted (row
2). For similar tasks in Q3 these values are 4.5% and 7%
respectively. Since the total average runtime of tasks as
well as job durations are similar in both queues, resources
in the Madison Condor pool seem to exhibit a higher de-
gree of volatility, confirming our assumption of the size-
volatility trade-off. This is further confirmed by tasks in Q4,
where about 14% of all jobs of the task are usually evicted.
This value reflects an average of the fluctuations of resource
volatility over longer periods of execution of these tasks.

Simple calculations show that, provided a dedicated
cluster, a task at Q2 could have been completed in about
20 minutes, while the actual results in the opportunistic en-
vironment are about 4 times higher. This is in part due to the
known phenomenon where, when short tasks are executed
in opportunistic environments, the last few jobs of a task
may dominate its running time because of resource volatil-
ity and heterogeneity [27].

Another important grid property is the amount of re-
sources simultaneously allocated to the same user (row 3
in Table 3). We measured this value for each parallel task
by counting the number of simultaneously executing jobs
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between invocations of the first and the last submitted jobs,
sampling at any invocation or termination event and averag-
ing over all available samples. The intuition is to measure
the resource allocations only when a task still has pending
job execution requests. We note that this value depends on
the total number of job execution requests of a given task.
Thus we normalize it by the total number of jobs per task,
and average it over all parallel tasks in the queue (row 4
in Table 3). These values show that on average, tasks which
are scheduled for execution at UW Madison obtain more re-
sources than those scheduled in the Technion Condor pools,
justifying the structure of our grid hierarchy.

7 Related work

Execution of parallel tasks in grid environments has been
thoroughly studied by grid researchers.

Running massively parallel tasks in heterogeneous large-
scale environments has been subject of many works (e.g.,
[10, 36, 11, 24, 9, 27]), that strive to minimize the
turnaround time of a single task. In particular, [27] ad-
dressed the problem of resource management for short-lived
tasks on desktop grids, demonstrating the suitability of grid
platforms for execution of short-lived applications.

Meta-schedulers, such as [1, 4], strive to maximize the
overall throughput and system utilization, as opposed to
minimizing the task’s turnaround time in our work.

Sabin et al. [31] suggest an algorithm for scheduling
a stream of parallel applications in a multi-grid, assuming
availability of reservation capabilities and absence of re-
source failures. Marchal et al. [28] discuss steady-state
scheduling of divisible workloads in wide-area grids. How-
ever, according to the authors, steady-state analysis ignores
the initialization and cleanup phases, which are critical for
short-lived tasks. The meta-scheduler component of the
GrADS project [14, 34] supports scheduling of multiple
tasks. This work assumes the ability to directly invoke and
preempt jobs on a given resource, and is not applicable to
our case. Still, it highlights the importance of scheduling
of multiple tasks for improving the turnaround time of indi-
vidual tasks in grids. Another component of this project is
the rescheduler [35], which inspired our implementation of
load sharing between queues.

The work in [18] demonstrates the benefits of load shar-
ing in a grid comprised of independently managed super-
computers, where entire parallel tasks are migrated between
sites upon decisions made distributively by each queue.
This work also influenced our load sharing mechanisms be-
tween the same-level grids.

A multilevel feedback queue algorithm for time-shared
single-CPU systems appeared first in [26]. The authors of
[23, 17] analyze the scheduling of tasks with highly vari-
able known processing times on a set of identical servers.

The authors show both theoretically and via simulation that
a scheduling policy which minimizes the waiting time in
the system is one in which each server is assigned tasks of
a specific size range, approximating SPTF scheduling. This
principle is applied in many production supercomputing en-
vironments ( e.g., [25, 19, 29]). Results published in [8]
show that SPTF policies do not penalize long tasks, when
the task size distribution has a heavy-tail property and the
largest 1% of the tasks comprises more than half the load,
as in our system. Although these works assume availabil-
ity of task size information and homogeneous servers, they
encouraged us to apply similar techniques in our system.

8 Conclusions and future work

In this work we presented a method for organizing grids
and an algorithm for scheduling mixed workloads in multi-
grid environments. We implemented the algorithm for the
Superlink-online production system [5, 32] and demon-
strated that it yields short response times for short tasks even
when the system is already loaded with long ones.

Future work will address several limitations of the cur-
rent scheme. While the static approach we now use for
building the execution hierarchy yields reasonable perfor-
mance, the volatile nature and properties of grid systems
call for dynamic structures. This requires on-the-fly adapta-
tion of the hierarchy to the changing properties of the grids,
and a cost model to take into account locality of applications
and execution platforms. More precise predictions and/or
estimations of application runtime and task complexity are
needed. These should take into account real-time status in-
formation about the grids.
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