
Error Scope on a Computational Grid:
Theory and Practice

Douglas Thain and Miron Livny

University of Wisconsin, Computer Sciences Department
E-mail: thain,miron@cs.wisc.edu

Abstract

Error propagation is a central problem in grid comput-
ing. We re-learned this while adding a Java feature to the
Condor computational grid. Our initial experience with the
system was negative, due to the large number of new ways in
which the system could fail. To reason about this problem,
we developed a theory of error propagation. Central to our
theory is the concept of an error’s scope, defined as the por-
tion of a system that it invalidates. With this theory in hand,
we recognized that the expanded system did not properly
consider the scope of errors it discovered. We modified the
system according to our theory, and succeeded in making it
a more robust platform for distributed computing.1

1. Introduction

The Condor distributed batch system [29, 42, 17] is soft-
ware for managing a computational grid [30, 14, 21]. Re-
cently, we extended Condor with a feature that supports the
execution of Java [4] programs coupled with secure access
to remote storage. The result is a worldwide distributed
system providing a uniform environment for both execution
and I/O.

Contrary to some expectations, this change entailed
much more than simply placing the keyword java in front
of the program name. The introduction of the Java Virtual
Machine (JVM) and Condor I/O facilities created a large
new set of failure modes. We found it difficult to man-
age this new large set of errors, especially as they passed
through the many software layers in the system. More im-
portantly, our users were frustrated to be exposed to many
of these errors.

In order to reason about this problem, we turned to the
standard literature on fault tolerance [1, 39, 18]. We found
plenty of advice on how to replicate a computation so as

1This research was supported in part by a Cisco Distinguished Graduate
Fellowship.

to reduce the probability of failure, but we found little
guidance on how to represent and propagate errors through
autonomous layers of software. This surprised us, given
that layering is a well-established concept [11, 45], that er-
rors have been identified as an obstacle to user interaction
[12, 24], and that many languages provide specialized error
constructs such as exceptions [32, 23, 27].

Naturally, error propagation is well-understood when all
the components of a system are available for inspection and
modification. If the addition of a new component in a lower
layer introduces a new error type, we simply work our way
up through each layer, adding cases for the new error as
necessary. However, in a computational grid composed of
multiple autonomous components, we do not have the lux-
ury of re-engineering every component when a new one is
introduced. How should we deal with new error modes in
such a system?

To address this problem, we have constructed a theory of
error propagation suitable for a computational grid. We will
begin by describing our architecture for executing Java pro-
grams and discuss the difficulties we encountered. We then
develop our theory of error propagation by building on con-
cepts from fault-tolerance and software engineering. This
analysis yields several succinct guiding principles. Finally,
we return to the problem presented by Condor and apply
our principles. We conclude with some reflections on the
applicability of this theory.

2. Architecture

To discuss the problem of error propagation in a com-
plex system, we are obliged to detour long enough to de-
scribe our system in moderate detail. The reader familiar
with the Condor terminology may comfortably skim ahead,
while the reader interested in more detail may consult the
references.

Figure 1. The Condor Kernel

2.1. Condor Overview

The Condor distributed batch system creates a high-
throughput computing system on a community of com-
puters. A high-throughput system seeks to maximize the
amount of computation done over a long period of time
measured in months or years. A community of computers
may be any configuration of machines that agree to work
together, ranging from a single large SMP to a managed
PC cluster to a set of workstations spread around the world.
Condor was originally designed to manage jobs on idle cy-
cles culled from a collection of personal workstations [28],
and so is uniquely prepared to deal with an unfriendly exe-
cution environment by using tools such as process migration
[42] and transparent remote I/O [29].

The core components of Condor, known as the Condor
Kernel, are shown in Figure 1. They works as follows: Each
participant of the system is represented by a daemon process
that represents its interests. A user submits jobs to a schedd,
which keeps the job state in persistent storage, and works to
find places where the job may be executed. Each execu-
tion site is managed by a startd that enforces the machine
owner’s policy regarding when and how visiting jobs may
be executed. The requests and requirements of both parties
are expressed in a unique language known as ClassAds [38],
and forwarded to a central matchmaker. This process col-
lects information about all participants, and notifies schedds
and startds of compatible partners. Matched processes are
individually responsible for communicating with each other
and verifying that their needs are met. In this case, schedds
and startds communicate directly to claim one another and

Figure 2. The Java Universe

verify that their requirements are met. Once matched, each
creates a process to oversee the execution of one job. The
schedd starts a shadow, which is responsible for providing
the details of the job to be run, such as the executable, the
input files, and the arguments. The startd creates a starter,
which is responsible for the execution environment, such
as creating a scratch directory, loading the executable, and
moving input and output files.

Condor provides several universes for executing jobs.
Each universe provides a package of environmental fea-
tures. The Standard Universe provides transparent check-
pointing and remote I/O capabilities for binary executa-
bles. It requires the program to be re-linked with a Condor-
provided library. The Vanilla Universe can execute normal
scripts and binaries that are not re-linked, but such jobs
cannot checkpoint or migrate outside of a shared file sys-
tem. Specialized universes are provided for the Globus [17],
PVM [37], and MPI [48] environments.

2.2. The Java Universe

A growing number of computational scientists are turn-
ing to Java as a suitable language for distributed computing
[16, 19]. Although programs written for the JVM may not
always execute as quickly as native machine code, it is be-
lieved that this loss is more than offset by faster develop-
ment times and a larger pool of available CPUs.

To support this community, we have added a Java Uni-
verse to Condor. The added components are shown in Fig-
ure 2. In this universe, the starter does not execute the job
directly, but instead invokes the JVM which in turn invokes
the user’s Java program. The JVM binary, libraries, and
configuration files are all specified by the machine owner,
as they are certain to differ from location to location. The

user simply specifies the Java Universe, and does not need
to know the local details.

The starter transfers the user’s input and output files at
the beginning and end of execution. However, many jobs
require more extensive I/O, perhaps from a selection of files
that are impractical to transfer all together for every execu-
tion. For such programs, we provide a simple I/O library.
This library presents files using standard Java abstractions,
such as the InputStream and OutputStream inter-
faces.

This library does not communicate directly with any
storage resource, but instead calls a proxy in the starter via a
simple protocol called Chirp. The connection is established
from one process to another on the loopback network inter-
face. The library authenticates itself to the starter by pre-
senting a shared secret revealed to it through the local file
system. Thus, the connection is secure to the same degree
as the local system.

The proxy allows the starter to transparently add addi-
tional I/O functionality to the job without placing any bur-
den on the user. We envision that security and discovery
will be the typical applications of this proxy. For exam-
ple, a local firewall or other security device may be crossed
using information known only to the proxy, such as port
numbers and security credentials. Or, the proxy may select
an appropriate I/O device using a replica management sys-
tem [46] and transfer data using a secure, high-performance
mechanism such as GridFTP [3].

We demonstrate a typical application of the proxy by
making use of the standard Condor remote I/O channel to
the shadow. This facility provides UNIX-like file access in
the form of remote procedure calls secured by GSI [15] or
Kerberos [43].

2.3. Initial Experience

Our initial experience with this design was quite disap-
pointing. Under ideal conditions, jobs would execute as ex-
pected. However, nearly any failure in a component of the
system would cause the job to be returned to the user with an
error message. If the Java installation was somehow faulty
– the machine owner might give an incorrect path to the
standard libraries – the job would exit and return to the user
for consideration. If the job consumed more memory than
was available on the machine, the job would exit, indicat-
ing an OutOfMemoryError. If the shadow’s shared file
system became temporarily unavailable, the job would exit
indicating a ConnectionTimedOutException.

This behavior was correct in the sense that users received
true information about how their jobs executed. However,
it was undesirable because it required frequent postmortem
analysis to determine whether the job had exited of its own
account or simply because of accidental properties of the

execution site.
We found this frustrating, as we had gone to great trouble

to assure that no error value was left unconsidered. For ex-
ample, we ensured that file system errors discovered by the
shadow were transmitted to the starter, and then converted
into corresponding exceptions by the Java I/O library. At
process completion, the exit code of the JVM was transmit-
ted carefully back to the shadow, then the schedd and the
user.

Fault-tolerance techniques such as replication and retry
were not germane to this problem. Users wanted to see pro-
gram generated errors such as an ArrayIndexOutOf-
BoundsException, but wanted to be shielded against
incidental errors such as a VirtualMachineError.
Knowledge of such details might be useful to users or ad-
ministrators as a measure of system health, but were not
useful as a program result.

3. A Theory of Error Propagation

To better understand this problem, we require a theory
of error propagation. We will first describe key concepts
relating to errors and then embark on a discussion yielding
several succinct design principles. Our goal is not to design
new algorithms for fault-tolerant systems. Rather, we wish
to bring some structure to the analysis of errors. Once an
error is understood, then we may rewrite, retry, replicate,
reset, or reboot as the condition warrants.

3.1. Terms

The generally accepted definitions of fault, error, and
failure are those given by Avizienis and Laprie [5]. To para-
phrase, a fault is a violation of a system’s underlying as-
sumptions. An error is an internal data state that reflects a
fault. A failure is an externally-visible deviation from spec-
ifications.

For example, consider a machine designed to tally votes
in an election and display the name of the candidate with the
most votes. A random cosmic ray that passes through the
machine and corrupts some storage would be a fault. If the
corrupted storage contained program data in use, then the
changed data would constitute an error. If the error was sig-
nificant enough to alter the victor, then the machine would
have experienced a failure.

A fault need not result in an error, nor an error in a fail-
ure. This may be through accident – the cosmic ray might
corrupt storage not in use. Or, it may be through design –
there may be multiple redundant machines that themselves
must vote on the final output.

An error may be communicated in one of three ways:
An implicit error is a result that a routine presents as

valid, but is otherwise determined to be false. For example,

it would be an implicit error for
√

3 to evaluate to 2. It can
be expensive to detect an implicit error, typically requiring
duplication of all of part of a computation.

An explicit error is a result that describes an inability
to carry out the requested action. For example, a routine to
allocate memory may return a null pointer indicating “out of
space.” Explicit errors require no further work to determine
that they are errors, but may require additional work on the
part of the caller to determine the next course of action.

An escaping error is a result accompanied by a change
in control flow. This sort of error is not given directly to
the caller of a routine, but to a higher level of software. An
escaping error is necessary when a routine is unable to per-
form its action and is also unable to represent the error in
the range of its results.

Both explicit and escaping errors have been represented
in recent languages by the exception [20]. The exception
is a language feature that combines an object for carrying
rich error information along with a change of control flow
that allows the error to be propagated beyond the immediate
caller. This permits the implementation of both explicit and
escaping errors.

The exception is a useful programming tool, and we are
generally in favor of its use to improve the readability and
verifiability of programs. However, the use of exceptions
is neither necessary nor sufficient for building a disciplined
system. We will give examples that make use of exceptions,
but offer discussion in terms that can be applied to any error
representation, whether it be signals, strings, integers, or
exceptions.

3.2. Error Relationships

To illustrate the relationship between the three error
types, consider a standard virtual memory system that pro-
vides the illusion of a large memory space by making judi-
cious use of limited physical memory and a larger backing
store. Suppose that it discovers an explicit error: the back-
ing store is damaged or unavailable. If it cannot satisfy an
application’s load operation, what should it do? A load
operation has no return value that can signify an error.

The system might return a random or default value, thus
creating an implicit error in the calling layer. This would
be an unacceptable design. Implicit errors are difficult
enough to detect when they are introduced through acci-
dent or physical faults. We must not add to the problem by
making them a deliberate presence.

Principle 1 A program must not generate an implicit error
as a result of receiving an explicit error.

The system may attempt to apply any number of stan-
dard techniques in fault tolerance. It may consult mirrored
copies or simply retry the operation. But what if these fail

or timeout? The system must cause an escaping error rather
than raise the specter of an implicit error.

The escaping error is not simply the crutch of a novice
programmer that lazily calls abort rather than handle an
uncomfortable boundary condition. It is a vital component
of a system programmer’s toolbox that must be used when
a routine is in danger of violating an interface specification.
The escaping error is a disciplined exit resulting in an ex-
plicit error at a higher level of abstraction. It can be commu-
nicated in a variety of ways, depending on the form of the
communication interface. On a network connection, an es-
caping error is communicated by breaking the connection.
Within a running program, an escaping error is communi-
cated by stopping the program with a unique exit code. In
this case, a virtual memory system communicates an escap-
ing error by forcibly killing the client process, which then
exits with a signal indicating a memory error.

Principle 2 An escaping error must be used to convert a
potential implicit error into an explicit error at a higher
level.

The need for the escaping error is obvious in an interface
that cannot express errors, such as the virtual memory sys-
tem mentioned above. Yet, it is still necessary in interfaces
that express explicit errors. Consider this interface used to
access a file:

int open(String filename)
throws FileNotFound, AccessDenied;

The exceptions FileNotFound and AccessDenied
are explicit errors that describe an inability to carry out the
caller’s intentions. However, these explicit errors are ordi-
nary results in the sense that they conform to the function’s
interface. A well-formed caller of open must be prepared
to deal with these eventualities in some way. Indeed, one
purpose of the exception mechanism is to ensure that the
caller deals with all contractual results. The appearance of
these errors does not violate the contract of the function in
any way.

However, no interface can capture all of the possible im-
plementation errors of a routine. Every routine rests on
many unstated assumptions such as the coherency of mem-
ory and the infallibility of a function call. Such violations,
even if detected, are generally considered beyond the con-
cern of the designer.

The escaping error represents the mismatch between an
interface and an implementation. A file system may be built
in terms of disk operations, network communications, car-
rier pigeons, or other mechanisms not yet imagined. In or-
der to attach such systems to existing interfaces, we must
deal with error values that do not fit into an existing inter-
face. Regardless of the interface, a function such as open

may be susceptible to a PigeonLost if it is given an avian
implementation [47].

3.3. Error Scope

To be accepted by end users, grid software must be sensi-
tive to the distinction between the explicit and the escaping
error. If the grid can successfully create the computation
environment expected by the user, then a program’s result,
error or otherwise, must be returned to the caller. If the grid
is unable to create the expected environment, then an es-
caping error distinguishable from a program result must be
delivered to the surrounding system.

However, the use of the escaping error raises a conun-
drum. In order to accept and react to an escaping error,
a system must be able to understand its meaning to a cer-
tain degree. But, the very nature of an escaping error is
to describe a failure in terms inexpressible in a given in-
terface. To solve this problem, we need an abstraction that
balances the diagnostic need for information with the prin-
ciple of separation between implementation and interface.

We introduce the abstraction of error scope to solve this
problem. The scope of an error is the portion of a system
which it invalidates.

For example, FileNotFound has file scope. It sim-
ply states that the named file cannot be found. A failure in
remote procedure call (RPC) [6] has process scope. It indi-
cates that the mechanism of function call is no longer valid
within the process. A node failure in PVM [37] has cluster
scope. If one node crashes, then the whole cluster of nodes
is obliged to fail.

In each case, an error must be interpreted by the pro-
gram (or process, routine, function, etc.) that is responsible
for managing that error’s scope. For example, the calling
function is capable of handling an error of function scope.
The creator of a process is capable of handling an RPC error
of process scope. The creator of a PVM cluster is capable
of handling an error of cluster scope.

Principle 3 An error must be propagated to the program
that manages its scope.

An error’s scope may be re-considered at many layers. It
may gain significance, or expand its scope, as it travels up
through layers of software. For example, at the level of net-
work communications, an error indicating a lost connection
is simply that. However, when interpreted in the context
of RPC or PVM, it becomes an error of process or cluster
scope, respectively.

In many cases, there may be a specialized mechanism for
delivering an error to the manager of its scope. For exam-
ple, a POSIX signal can deliver an error directly to a parent
process. In other cases, we may use an indirect channel,

such as a file, to carry the necessary information to its des-
tination. We will see an example of this in Section 4.

3.4. Generic Errors

A frequent source of confusion in error propagation is
the generic error. A generic error is an indication that an
routine may return any member of an expandable set of re-
lated errors. Such an interface makes a very weak statement
about the behavior of a routine, creating confusion for both
the implementor and the caller.

An example of a generic error may be found in the Java
I/O system. Consider this innocuous interface fragment:

class FileWriter {
FileWriter(File f)

throws IOException;
void write(int)

throws IOException;
}

The generic error IOException, thrown by both both
methods, is defined by the standard Java package and is
extended to include a variety of exception types such as
FileNotFound and EndOfFile. Users of these inter-
faces are encourage to create new error types that extend
the basic type. This appears attractive: flexibility and gen-
erality are usually seen as programming virtues. However,
this generic interface creates problems with both the errors
it includes and those it omits.

The use of IOException suggests that both methods
are subject to the same set of explicit errors. This is cer-
tainly not the case in most I/O systems. Traditionally, the
act of opening a file is subject to errors of permission and
existence that occur while navigating a namespace. Once
opened, the file is locked in such a way that reads and writes
are sure to succeed, subject to the bounds of the file size.
Would it be reasonable for an implementation of write to
throw a FileNotFound? Of course not! That would vi-
olate the standard expectations we have of an I/O system.
Even if we could manage to build a bizarre distributed file
system subject to losing a file in the middle of a write,
we would expect to receive an escaping error, not an ex-
plicit error. We know this only because we are familiar with
the conventions of I/O systems. If we were to encounter a
generic error in a less familiar interface, the behavior would
not be so obvious.

Despite the invitation to extension, there is little practi-
cal way to make use of an error type not mentioned in the
originally documented instances of IOException. Sup-
pose that we wish to know when the file system runs out of
space. (This possibility is not mentioned in the Java docu-
mentation.) From the caller’s perspective, we have no idea

how an implementation will behave. Will it throw a Disk-
Full or a FullDisk? From the implementor’s perspec-
tive, we have no idea if the caller is prepared to deal with
this error. Can it handle an DiskFull or would it be better
to retry and hide the error? At least one Java implementa-
tion avoids this problem entirely by blocking indefinitely
when the disk is full. The generic error offers us no help
in deciding whether other implementations will behave this
way.

If we wish to make a caller and an implementor agree
on a convention for a DiskFull error, we must estab-
lish some way for them to know that the other is aware of
the convention. To know this would violate the principle
of separation between interface and implementation, unless
we simply create a new interface that describes DiskFull.

We conclude that the generic error leads to more ques-
tions than answers. Rather than bringing structure to an
interface, it forces the participants to make guesses. We ad-
vocate that an error interface is only useful when it makes
a strong, limited statement. It is better to exclude a Disk-
Full error entirely then to leave the participants guessing
at its existence.

Principle 4 Error interfaces must be concise and finite.

If we were able to revise these I/O interfaces to conform
to Principle 4, we would write something like this:

class FileWriter {
FileWriter(File f)

throws FileNotFound,
AccessDenied;

void write(int)
throws DiskFull;

}

If this revised interface were to be used in a context with
the possibility of a new type of fault, such as Connec-
tionLost, then it must be communicated with an escap-
ing error according to Principle 2. If the caller wishes to
deal with such an error explicitly, then a new interface must
be constructed to inform both parties of their mutual inter-
est.

4. Condor Revisited

To apply these ideas to the Java Universe, we must first
identify the system’s various error scopes and their handling
programs. This is shown in Figure 3. Dotted lines indicate
scopes, circles indicate handling programs, squares indicate
resources, and arrows indicate return values.

Each process in the system is responsible for managing
certain physical resources. Error scopes correspond directly
to management responsibility. For example, a corrupted

program or a missing input file has job scope. In such a
case, the schedd is responsible for informing the user that
the job cannot run. An unavailable file system has local
resource scope. The shadow would be responsible for in-
forming the schedd that the job cannot run right now. In
contrast, a misconfigured JVM has remote resource scope.
The starter would be responsible for informing the shadow
that the job cannot run on the given host. A lack of memory
for the program has virtual machine scope. The JVM would
be responsible for informing the starter that the job cannot
run in the current conditions.

In each scope, the managing program could apply fault-
tolerance techniques to mask the error, or it can propagate
the error up the chain. If it chooses the latter, it must dis-
tinguish between errors in its own scope and errors in con-
taining scopes. The last line of defense is the schedd. If
it detects an error of program scope, it identifies the job as
complete and returns it to the user. If it detects an error of
job scope, it identifies the job as unexecutable and also re-
turns it to the user. Anything in between causes it to log the
error and then attempt to execute the program at a new site.

With this understanding, our mistake in building the Java
Universe becomes clear: We failed to apply Principle 3 and
direct errors to the manager of each scope. Several small
changes throughout the system were necessary to fix this
problem. We will give two examples.

While executing a Java program, we relied entirely on
the exit code of the JVM as an indicator of program suc-
cess. This introduced implicit errors, violating Principle 1.
As Figure 4 shows, the JVM can cause an environmental er-
ror to appear as a program result. To retrieve the necessary
information, we added the wrapper shown in Figure 2. The
starter causes the JVM to invoke the wrapper with the actual
program as an argument. The wrapper locates the program,
attempts to execute it, and catches any exceptions it may
throw. It examines the exception type, and then produces
a result file describing the program result and the scope of
any errors discovered. The starter examines this result file
and ignores the JVM result entirely.

While performing I/O, we blindly converted all possible
explicit errors from the proxy directly into corresponding
Java exceptions. For failure modes not represented by exist-
ing exception types, we simply extended the basic IOEx-
ception to a new type. Although this was easy, it was in-
correct. We gave in to the temptation offered by the generic
error interface proscribed by Principle 4. Although errors
such as “connection timed out” and “credentials expired”
could technically be represented by an IOException,
they violated a program’s reasonable expectations of the I/O
interface and thus fell outside of the program’s scope. To
propagate such errors correctly, we applied Principle 2 and
modified the I/O library to send an escaping error (a Java
Error) to the program wrapper, which communicates the

schedd

Virtual
CPU

Virtual
Memory

Program
Image

Args
Program

Input
Data

Code Data

Space
Temp

Java
Pkg

Policy
Owner

Output
Space

Server
I/O

Policy
User

starter

shadow

JVM

Program

Program Result

Remote Resource Scope

Local Resource Scope

Job Scope

Program Scope

Virtual Machine Scope

Summary of All Execution Attempts + Program Result (If Any)

Shadow Result + Starter Result + JVM Result + Program Result (If Any)

Virtual Machine Result + Program Result (If Any)

Starter Result + JVM Result + Program Result (If Any)

Figure 3. Error Scopes in the Java Universe
This figure shows the various error scopes and their handling programs in the Java Universe. Each dotted rectangle

indicates a scope. Attached circles indicate the handling program for each scope. Squares indicate resources that are
members of each scope. Labelled arrows indicate return values from one handler to another.

Execution Detail Error Scope JVM Result Code
The program exited by completing main. Program 0
The program exited by calling System.exit(x) Program x
Exception: The program de-referenced a null pointer. Program 1
Exception: There was not enough memory for the program. Virtual Machine 1
Exception: The Java installation is misconfigured. Remote Resource 1
Exception: The home file system was offline. Local Resource 1
Exception: The program image was corrupt. Job 1

Figure 4. JVM Result Codes
This figure shows the result code generated by the JVM for various possible program executions. The result code is not
useful, because it does not distinguish error scopes. A result of 1 could indicate a normal program exit, an exit with an
exception, or an error in the surrounding environment. This problem is solved by the wrapper described in Section 4.

error scope to the starter through the result file.
The reader may object that the “reasonable expectations”

test is more suited to the courtroom than the machine room.
We admit that there is room for disagreement in such a sub-
jective term. It is precisely this confusion which motivates
our statement of Principle 4.

With the changes described above, the hailstorm of error
messages abated, and the system settled into a production
mode.

5. Other Directions

Our theory of error propagation brings some structure to
the analysis of errors in complex systems, particularly as
information crosses system boundaries. Of course, there re-
main many open issues in the problem of error propagation.

A high frequency of errors delivered correctly may still
be a performance problem. For example, a small number
of misconfigured machines in our Condor pool attracted a
continuous stream of jobs that would attempt to execute,
fail, and be returned to the schedd. Although the situation
was handled correctly, there was continuous waste of CPU
and network capacity. To rectify this, we borrowed a lesson
from the Autoconf [31] tool. Rather than blindly accept
each owner’s assertion regarding the Java installation, we
modified the startd to test the installation at startup. If found
lacking, then the startd simply declines to advertise its Java
capability. A complementary approach would be to enhance
the schedd with logic to detect and avoid hosts with chronic
failures.

The appropriate response to an error may be unclear if its
scope is indeterminate. This problem is particularly com-
mon in networking. For example, a refused network con-
nection may indicate that the target service is temporarily
offline, or it may indicate that the caller has given an invalid
address. In these situations, time becomes a factor in error
propagation. A failure to communicate for one second may
be of network scope, but a failure to communicate for a year
likely has larger scope. To distinguish between the two, a
system must be given some guidance in the form of time-
outs or other resource constraints from the user or admin-
istrator. A example of this problem is found in NFS [41],
where a file system may either be “hard mounted” to hide all
network errors or “soft mounted” to expose them to callers
after a certain retry period expires. Both users and admin-
istrators routinely comment how both of these choices are
unsavory, as they offer no mechanism for a single program
to choose its own failure criteria.

We have concentrated on explicit errors, but implicit er-
rors are a more difficult topic, and may be more common
than we care to believe. Despite low-level error correction,
implicit errors have been observed in increasingly uncom-
fortable rates in networks, memories, and CPUs [44, 34].

Condor itself has little recourse for discovering such errors
in applications unless it knows a priori the structure of a
job or its valid inputs and outputs. The end-to-end princi-
ple [40] tells us that the ultimate responsibility for detecting
such errors lies with a higher level of software. A process
above Condor may work on behalf of the user to analyze
outputs and replicate or resubmit jobs that fail due to im-
plicit errors or failures in Condor itself.

6. Related Work

The Reflective Graph and Event (RGE) model [36, 35],
developed by the Legion [21] project, is a significant effort
to address fault-tolerance in widely distributed systems. In
this model, a standard library is used to implement all data
structures and communication in all components of the sys-
tem. Fault-tolerance is then achieved through modeling and
introspection. A program may detect faults by comparing
reality to a model of its expected behavior. Several forms
of fault-tolerance may be implemented by inspecting and
modifying one’s own data structures during execution. This
approach yields great power within a single closed system
where all components are available for introspection. In
Condor, if the starter were aware of all the internal details
of a remote JVM, then the significance of an execution er-
ror would be obvious by design. However, reality dictates
that Condor and Java hide implementation details from each
other. Our approach complements the RGE model by con-
sidering how errors propagate between closed systems.

The use of exceptions as a language feature is generally
attributed to Goodenough [20], and has progressed through
a variety of languages from research to commercial use, in-
cluding CLU [27], Haskell [32] Ada [23], C++ [13], and
Java [4], to name a few. However, the exception has not re-
ceived universal approbation; see Black [7] for an argument
against. The many variations on the exception concept have
disagreed on whether an interface must declare all possible
exceptions present in the implementation.

The discipline of design by contract, proposed abstractly
by Hoare [22] and developed concretely by Meyer[33], of-
fers some discussion of the distinction between explicit and
escaping errors. Similar hints are also given by Goode-
nough [20], Ekanadham and Bernsteien [26], and Howell
and Mularz [23]. In such work, the escaping error is usually
implemented by an instruction that brings the entire com-
putation to a halt with a message to the console. This is
neither possible nor desirable in a distributed system. We
build upon this work by arguing that escaping errors must
be studied, expected, and structured.

A universal instruction set for heterogeneous computing
has been a persistent goal of computer science for many
decades. Diehl et al. [10] offer a bibliography of such sys-
tems. The Java Virtual Machine [4] has recently been the fa-

vorite target for a variety of distributed computing systems
[9, 8, 2]. An early exploration of Java support for Condor
[19] examined primarily the problem of transparent check-
pointing. One major obstacle to the acceptance of Java in
scientific computing is a concern about the precise seman-
tics of floating-point operations [25].

7. Conclusion

We have used the Condor Java Universe as a detailed
example for exploring a theory of error propagation. The
main contributions of our theory are several succinct design
principles and the concept of error scope. In summary, our
principles are:

1. A program must not generate an implicit error as a
result of receiving an explicit error.

2. An escaping error must be used to convert a potential
implicit error into an explicit error at a higher level.

3. An error must be propagated to the program that man-
ages its scope.

4. Error interfaces must be concise and finite.

Our initial design mistake in the Java Universe was to
aggressively represent all possible faults as explicit errors
in the nearest interface. Our redesign recognized that errors
violating the assumptions of the caller must instead be con-
sumed by the surrounding system. The necessary changes
were small but powerful.

The scope of an error is an abstraction that allows coop-
erating processes to take appropriate action without under-
standing the full detail of an error. In Condor, the submis-
sion site does not understand all of the possible reasons a
program may fail to execute, nor does the execution site un-
derstand all of the possible reasons an I/O operation may
fail. Yet, the two may cooperate by knowing the scope,
rather than the detail, of errors that they communicate.

In conclusion, we mentioned that our first implementa-
tion was correct in the sense that users received true infor-
mation. If the end-to-end principle obliges the user to ana-
lyze a program’s outputs anyway, then why must we go to
all this trouble to analyze errors? The answer is, of course,
performance of the most coarse variety. A human is the
slowest part of any computing system. A disciplined error
propagation system conserves two precious resources: time
and aggravation.

8. Acknowledgments

The Condor software is the work of many people. Al-
though we may claim credit (or blame!) for the most re-
cent changes, much of the understanding of failure modes

comes from the first-hand experience of its many contrib-
utors. We would like to acknowledge the dozens of peo-
ple who have added code and understanding, and especially
recognize the core architects Michael Litzkow, Todd Tan-
nenbaum, and Derek Wright. We would also like to thank
Remzi Arpaci-Dusseau, Alain Roy, Brian White, and the
anonymous referees for their helpful advice while prepar-
ing this paper.

References

[1] R. J. Abbot. Resourceful systems for fault tolerance, relia-
bility, and safety. ACM Computing Surveys, 22(1), March
1990.

[2] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. SuperWeb: research issues in Java-based
global computing. Concurrency: Practice and Experience,
9(6):535–553, 1997.

[3] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and
S. Tuecke. Protocols and services for distributed data-
intensive science. In Proceedings of Advanced Computing
and Analysis Techniques in Physics Research (ACAT), pages
161–163, 2000.

[4] K. Arnold and J. Gosling. The Java Programming Lan-
guage, Second Edition. Addison-Wesley, Reading, Mas-
sachusetts, 1997.

[5] A. Avizienis and J.-C. Laprie. Dependable computing: From
concepts to design diversity. Proceedings of the IEEE,
74(5):629–638, May 1986.

[6] A. D. Birrell and B. J. Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems,
2(1):39–59, Februrary 1984.

[7] A. P. Black. Exception handling: The case against. Tech-
nical Report TR 82-01-02, University of Washington Com-
puter Sciences Department, January 1982.

[8] H. Casanova and J. Dongarra. Netsolve: A network solver
for solving computational science problems. Technical Re-
port CS-95-313, University of Tennessee, Department of
Computer Science, 1995.

[9] K. M. Chandy, B. Dimitrov, H. Le, J. Mandelson,
M. Richardson, A. Rifkin, P. A. G. Sivilotti, W. Tanaka, and
L. Weisman. A world-wide distributed system using Java
and the Internet. In Proceedings of the Fifth IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC), Syracuse, New York, August 1996.

[10] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for
programming language implementation. Future Generation
Computer Systems, 16:739–751, 2000.

[11] E. W. Dijkstra. The structure of the THE multiprogramming
system. In Proceedings of the ACM Symposium on Operat-
ing System Principles (SOSP), Gatlinburg, Tennessee, Octo-
ber 1967.

[12] K. Efe. A proposed solution to the problem of levels
in error-message generation. ACM Computing Practices,
30(11):948–955, November 1987.

[13] M. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison Wesley, 1992.

[14] I. Foster and C. Kesselman. Globus: A metacomputing in-
trastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[15] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-
rity architecture for computational grids. In Proceedings of
the 5th ACM Conference on Computer and Communications
Security Conference, pages 83–92, 1998.

[16] G. C. Fox and W. Furmanski. Java for parallel computing
and as a general language for scientific and engineering sim-
ulation and modeling. Concurrency: Practice and Experi-
ence, 9(6):415–425, 1997.

[17] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids. In Proceedings of the Tenth IEEE Sympo-
sium on High Performance Distributed Computing (HPDC),
pages 7–9, Sffan Francisco, California, August 2001.

[18] F. C. Gartner. Fundamentals of fault-tolerance distributed
computing in asynchronous environments. ACM Computing
Surveys, 31(1), March 1999.

[19] A. Globus, E. Langhirt, M. Livny, R. Ramamurthy,
M. Solomon, and S. Traugott. JavaGenes and Condor:
Cycle-scavenging genetic algorithms. In Proceedings of
the ACM Conference on Java Grande, pages 134–139, San
Francisco, California, 2000.

[20] J. B. Goodenough. Exception handling: Issues and a pro-
posed notation. Communications of the ACM, 18(12), De-
cember 1975.

[21] A. Grimshaw, W. Wulf, et al. The Legion vision of a
worldwide virtual computer. Communications of the ACM,
40(1):39–45, January 1997.

[22] C. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, Oc-
tober 1969.

[23] C. Howell and D. Mularz. Exception handling in large Ada
systems. In Proceedings of the ACM Washington Ada Sym-
posium, June 1991.

[24] E. J. S. Jr. Making APL error messages kinder and gentler.
In ACM Conference on APL, pages 320–324, 1989.

[25] W. Kahan and J. Darcy. How Java’s floating-point hurts
everyone everywhere. Talk given at the ACM 1998 Work-
shop on Java for High-Performance Network Computing
(http://www.cs.uscb.edu/conferences/˜wkahan/JAVAhurt.pdf),
March 1998.

[26] K.Ekandham and A. Bernstein. Some new transitions in
hierarchical level structures. Operating Systems Review,
12(4):34–38, 1978.

[27] B. Liskov and A. Snyder. Exception handling in CLU. IEEE
Transactions on Software Engineering, 5(6), 1979.

[28] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[29] M. J. Litzkow. Remote UNIX - Turning idle workstations
into cycle servers. In USENIX Conference Proceedings,
pages 381–384, Summer 1987.

[30] M. Livny and R. Raman. High-throughput resource man-
agement. In I. Foster and C. Kesselman, editors, The
Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, 1998.

[31] D. Mackenzie, R. McGrath, and N. Friedman. Au-
toconf: Generating automatic configuration scripts.
http://www.gnu.org/autoconf, 1994.

[32] S. Marlow, S. P. Jones, A. Moran, and J. Reppy. Asyn-
chronous exceptions in Haskell. In Proceedings of the ACM
Conference on Programming Langauge Design and Imple-
mentation (PLDI), Snowbird, Utah, June 2001.

[33] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, New Jersey, 1997.

[34] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. In-
creasing relevance of memory hardware errors: A case for
recoverable programming models. In Proceedings of the 9th
ACM SIGOPS European Workshop, September 2000.

[35] A. Nguyen-Tuong. Integrating Fault-Tolerance Techniques
in Grid Applications. PhD thesis, University of Virginia,
August 2002.

[36] A. Nguyen-Tuong and A. S. Grimshaw. Using reflection for
incorporating fault-tolerance techniques into distributed ap-
plications. Parallel Processing Letters, 9(2):291–301, 1999.

[37] J. Pruyne and M. Livny. Providing resource management
services to parallel applications. In Proceedings of the Sec-
ond Workshop on Environments and Tools for Parallel Sci-
entific Computing, May 1994.

[38] R. Raman. Matchmaking Frameworks for Distributed Re-
source Management. PhD thesis, University of Wisconsin,
October 2000.

[39] B. Randell, P. Lee, and P. Treleaven. Reliability issues in
computing system design. ACM Computing Surveys, 10(2),
June 1978.

[40] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems,
2(4):277–288, November 1984.

[41] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
filesystem. In Proceedings of the Summer 1985 USENIX
Conference, pages 119–130, 1985.

[42] M. Solomon and M. Litzkow. Supporting checkpointing and
process migration outside the UNIX kernel. In USENIX
Conference Proceedings, pages 283–290, Winter 1992.

[43] J. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An au-
thentication service for open network systems. In USENIX
Conference Proceedings, pages 191–200, Winter 1988.

[44] J. Stone and C. Partridge. When the CRC and TCP check-
sum disagree. In Proceedings of ACM SIGCOMM, Stock-
holm, Sweden, August 2000.

[45] A. Tannenbaum. Structured Computer Organization.
Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

[46] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection
in the globus data grid. IEEE International Symposium on
Cluster Computing and the Grid (CCGrid), May 2001.

[47] D. Waitzman. A standard for the transmission of IP data-
grams on avian carriers. Internet Engineering Task Force
(IETF) Request For Comments (RFC) 1149, April 1990.

[48] D. Wright. Cheap cycles from the desktop to the dedicated
cluster: combining opportunisitc and dedicated scheduling
with Condor. In Conference on Linux Clusters: The HPC
Revolution, Champaign-Urbana, Illinois, June 2001.

