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Abstract

Despite many competitors, Ethernet became the domi-
nant protocol for local area networking due to its simplic-
ity, robustness, and efficiency in wide variety of conditions
and technologies. Reflecting on the current frailty of much
software, grid and otherwise, we propose that the Ethernet
approach to resource sharing is an effective and reliable
technique for combining coarse-grained software when fail-
ures are common and poorly detailed. This approach in-
volves placing several simple but important responsibilities
on client software to acquire shared resources conserva-
tively, to back off during periods of failure, and to inform
competing clients when resources are in contention. We
present a simple scripting language that simplifies and en-
courages the Ethernet approach, and demonstrate its use
in several grid computing scenarios, including job submis-
sion, disk allocation, and data replication. We conclude
with a discussion of the limitations of this approach, and de-
scribe how it is uniquely suited to high-level programming.

1. Introduction

Any user or designer of distributed systems knows from
experience that failures are endemic to large systems. They
occur at every level from individual transistors all the way
up to high-level software. Ordinary workstations fail or re-
boot about once a day. [18] One in several thousand TCP
segments fails its checksum. [25] One estimate suggests
large commodity clusters experience several memory errors
a day despite error-correcting hardware. [21]

This is doubly true for grid computing. Those involved
in the day-to-day activities of deploying and operating such
systems need not be reminded of the tyranny of failures,
frequently from sources that are entirely unexpected. Al-
though well-known software tools and techniques carefully
manage capital investments such as data archives and CPU
clusters, the source of failures is frequently in some pro-
saic unmanaged resource such as free file descriptors or free

scratch space in a user’s home directory.
In particular, at high levels of abstraction in integration

tools such as command line shells, the necessary details to
analyze and react precisely to such errors simply are not
available. This is not the fault of any single component, but
contributors include blunt software interfaces, conventions
designed for interactive users, and sometimes the essential
nature of distributed systems. Rather than suggest that we
throw out such software and start over, we want to investi-
gate how such tools may be made expressive, efficient, and
reliable.

To attack this problem, we re-use a good idea: the Eth-
ernet arbitration protocol. The Ethernet protocol is not sim-
ply endless retries, but is a set of precise obligations placed
upon clients that encourage the efficient use of a shared re-
source without worrying too much about precisely what the
source of a problem may be.

Further, we propose that the Ethernet idea should not
simply be a hidden implementation technique, but should
be exposed to both users and administrators at the highest
layers of programming. To explore this idea, we present
a simple language, the fault tolerant shell, which exposes
untyped failures in a manner similar to exceptions in other
languages. For example, this fragment retries a program
for up to one hour in three different configurations for five
minutes each:

try for 1 hour
forany host in xxx yyy zzz

try for 5 minutes
fetch-file $host filename

end
end

end

This language is easily implemented and greatly relieves
the user of dealing with the complexity of many error con-
ditions. However, we must caution that a cavalier attitude
toward the reason for an error must not extend to the details
necessary for recovery. As we will show, there are sub-
tle details to the Ethernet approach that must be obeyed in
order to achieve efficient allocation of shared resources, es-
pecially when contention is unexpected.



With this technique, we will demonstrate three grid com-
puting scenarios where conventional tools fail, but the Eth-
ernet approach succeeds. These include submitting jobs to
a scheduler, sharing a filesystem as an output buffer, and
reading data from potentially faulty servers.

We must state up front that the Ethernet approach is not
applicable in all cases or at all levels of a system. It is most
useful in uncontrolled systems with highly variable perfor-
mance, a description that applies to many wide-area com-
puting systems. It is less applicable in tightly-controlled,
centralized systems. After describing the details of the Eth-
ernet approach, we will conclude with some discussion of
its applicability.

2. Programming the Grid

Pascal is for building pyramids – imposing,
breathtaking, static structures built by armies
pushing heavy blocks into place. Lisp is for build-
ing organisms. - Alan J. Perlis [1]

Today, deploying a grid is like building pyramids with
stone and mortar. Most applications destined for grid com-
puting are not specialized for or even aware of their role.
Rather, large existing codes, written in languages such as
C, Fortran, or Java, are adapted into a grid environment
through glue languages such as Perl, Tcl, or Bourne shell.
Glue programs serve to insulate applications from the sys-
tem, preserving the illusion of a reliable standalone system.

These glue languages are designed for rapid prototyp-
ing, system assembly, and user interface, and they are quite
good at those tasks. However, they are not as well suited
for grid computing. Grid jobs are generally not interactive.
They may operate for hours, days, or months without di-
rect connection to a living user. Further, they are likely to
operate in environments that are wildly different than the
original designer used. Glue programs used in this environ-
ment appear plausible at first, but then fall to pieces in a grid
environment. There are (at least) two major causes of this
problem: timing is uncontrollable, and failures lack detail.
Let’s consider each in detail.

Timing is Uncontrollable. The timing of arbitrary pro-
grams is far beyond the control of the ordinary user of a
modern computing system. Consider a NFS [23] distributed
file system. The client interface of most NFS implementa-
tions does not include any way for the user to specify how
long an operation may be retried before it is considered a
failure. This parameter is left to the system administrator
and typically has two values. A “soft-mounted” file sys-
tem indicates failure to the application after retries exceed
sixty seconds. A “hard-mounted” file system retries forever,
never admitting failure to the application.

These two settings are unlikely to satisfy all users. Some

users doing high-throughput batch processing may be per-
fectly happy to suffer a delay of up to a day simply for the
convenience of unsupervised recovery. Others performing
interactive work may wish to be exposed to failures after
five seconds so that work may be retried elsewhere.

Such delays are not unique to NFS, or even simply to
distributed file systems. Other delays may be forced while
waiting for shared locks, for software licenses, for available
disk space, or for network bandwidth. Indeed, unexpected
delays are the norm for any computing resource that is cho-
sen from a heterogeneous group, is shared among multiple
users, or is simply unreliable. A fundamental operation may
take a second, or it may take an hour: the user does not
know.

Failures Lack Detail. Systems built out of POSIX pro-
cesses exchange very little information at the interface be-
tween programs. POSIX programs are permitted to exit
in one of two ways: normally and abnormally. Normal
termination leaves behind an integer result whose mean-
ing is program-specific, while abnormal termination leaves
behind a signal number indicating a system-level problem
such as “segmentation fault” or “division by zero.” This di-
vision of error types is somewhat analogous to a function in
an exception-oriented language that may return an ordinary
integer or one of a number of exceptions. The former indi-
cates that the function successfully computed a result, while
the latter indicates no result could be computed.

We might be tempted to use this distinction to carry
something like typed exceptions between processes. How-
ever, the reality of POSIX programs makes this impracti-
cal. Consider the command line cp a b, which invokes
the command cp to copy the file named a to the file named
b. There are many ways for this command to succeed or
fail, but at a minimum, we would like to distinguish the fol-
lowing cases:

1. The file was copied.

2. The file a does not exist.

3. The file system was offline.

4. The program cp could not be loaded and run.

These distinctions are important because they guide re-
covery actions. In the first case, we ought to return im-
mediately, indicating success. In the second case, the fault
most likely lies with the submitter of the command, so we
ought to return immediately indicating failure. In the third
and fourth cases, we may wish to retry the operation several
times, with a reasonable expectation that the system will re-
pair itself.

Sadly, these distinctions are rarely available. In case of
success, a program exits with code 0. The other three cases
are not distinguishable. In the second case, most programs



examine the arguments and then exit normally with a result
of 1. The third case would appear by description to be ex-
ceptional. However, in C-based programs, such errors are
detected as an ordinary failure of an I/O call, resulting in an
normal exit with code 1. In Fortran-based programs, such
failures result in an inability to execute an OPEN, causing
an abnormal exit. The fourth case may sometimes be dis-
tinguished from the others by a failure to create the process,
rather than an error in its exit code. However, failures during
runtime dynamic linking also result in the indistinguishable
exit code 1.

It may fairly be observed that these distinctions may be
made for some programs some of the time. For example,
many versions of grep, a tool for searching files, use dif-
ferent normal exit codes to distinguish between “file not ac-
cessible” and “no matches found”. However, such programs
are rare, and there exists no convention for these codes.

A similar discussion applies to many interfaces beyond
local process invocation. For example, the GRAM [8] re-
mote process invocation interface provides over 160 unique
error codes detailing how GRAM itself may fail, but does
not provide the exit status of complete jobs. The File Trans-
fer Protocol [22] uses the single code 550 to represent any
error at all discovered in a remote file system. The AFS [15]
distributed file system uses the same error code (EACCESS)
to represent both authorization failure and credential expira-
tion. Many more examples abound. A lack of failure detail
may be found in nearly every sort of programmable inter-
face.

Consequences. It might be argued that this situation is
hopeless: that such programs and interfaces are archaic and
should be replaced with a more modern invocation system
that hides more errors, provides more details, and gives the
user better control of timing at the process level. We readily
admit to making such an argument [29] relating to inter-
preted programs in distributed systems.

However, we live and work a world populated by these
programs. Rewriting them all to correspond to a new ethic
of interaction is simply not practical. Instead of simply
scolding this situation, we wish to explore the possibility
of constructing a reliable system from these components.
In particular, we believe that the Ethernet philosophy to re-
source management is appropriate when both control and
information are limited.

In particular, we want a language and a system that as-
sists with the detection and handling of all failures, does not
unduly clutter the program with recovery code, simplifies
the use of alternate resources for recovery, and returns some
control over timing to the user. These goals are similar to
those raised (no pun intended) in favor of the exception [12]
as a language feature for dealing with failures. We will see
below that exceptions have a very different character when
failure detail is unavailable.

3. The Ethernet Approach

In allocating resources, strive to avoid disaster,
rather than to attain an optimum. [17]

We begin by reviewing the properties of Ethernet that are
applicable to the management of computing resources other
than networks. [20]

Carrier sense. An Ethernet-like client cannot consume
resources at will. Before using a resource, it must wait until
sufficient capacity becomes idle and then perform an acqui-
sition protocol to allocate what it needs. On a network, this
means listening for a silent period, while on a storage de-
vice, this may mean watching until sufficient space is free.
The acquisition protocol is permitted to occasionally fail,
allocating a resource to more than one resource. This is
permitted because of the second property:

Collision detect. A client must be wary when using a
newly-gained resource. It may also be in use by another
client; this is known as a collision. This may be due to a
race condition in the acquisition protocol, or because the
underlying medium simply has underlying flaws. In order
to detect collisions, the client must observe the effects of its
actions rather than simply assume their success.

Exponential backoff. Collisions suggest that the short-
term load on the system is greater than can be served. Be-
cause there is no central authority, clients must individually
be responsible for reducing the instantaneous load by delay-
ing and trying again with an increasing delay. Of course, the
problem will not be solved if all clients return at the same
instant, so some asymmetry or random factor is needed to
discourage cascading collisions.

Limited allocation. Even after fairly acquiring a re-
source and using it without collision, a client must release
it periodically to permit others to compete in the acquisi-
tion protocol. Without this requirement, other clients may
be starved of any service at all.

If we are not careful to preserve all of these require-
ments, then we are left with a very different protocol. [6] For
example, if we are unable to provide a form of carrier de-
tect, we do not have the Ethernet protocol, but instead some-
thing like the Aloha [2] satellite network protocol. The key
difference is that an Aloha-like client consumes resources
at will, only detecting collisions after the fact. As we will
see below, an Aloha algorithm can be implemented with
less knowledge of the underlying system, but at a signifi-
cant cost in performance under load. (The original Aloha
network would saturate at an offered load of 18 percent.)

From these detailed properties, we may also infer some
more philosophical design properties that may we borrow
for software systems.

Clients are responsible for efficiency. Computer sys-
tems are full of many resources, both major and minor,



that have no central authority for allocation and manage-
ment. Grid computing clients must accept some responsi-
bility for ensuring that these resources are used efficiently.
They need not necessarily preserve absolute fairness, but
certainly must not starve other waiting clients.

Failures may be turned into a performance problem.
Given sufficiently powerful tools for resetting state and har-
nessing alternate resources, any minor failure may be turned
into a reallocation of resources at some cost in performance.
As we pointed out earlier with NFS, different users will
wish to strike this balance differently.

Keep the user interface simple. If we consider both
Ethernet switches and IP routers, we see that the user in-
terface is both simple (packets go in, packets come out)
and implementation independent, but the administrative in-
terface (e.g. SNMP [7]) for debugging and tuning is both
complex and implementation dependent. 1 Our approach
will allow very simple language expression while allowing
for the possibility of debugging and management through
back channels.

4. The Fault Tolerant Shell

To explore the Ethernet approach, we introduce a script-
ing language called the fault tolerant shell or ftsh. The
techniques we describe are possible in any language, but the
introduction of a specialized syntax serves to make our ex-
amples succinct and watertight. Here, we will sketch the
unique features of the language. Further details may be
found in a technical report. [27]

Like any other shell, ftsh is a nested procedural scripting
language whose atoms are external commands. Compound
procedures may be built up by combining atoms and struc-
tural elements. A procedure, atomic or compound, does not
return any value, but simply succeeds or fails. An external
command succeeds if it exits normally with an exit code of
zero and fails otherwise. Compound procedures also suc-
ceed or fail based on their contents. A sequence of atoms
is known as a group. This group fetches an archive from a
web server, uncompresses it, and then unpacks it:

wget http://server/file.tar.gz
gunzip file.tar.gz
tar xvf file.tar

A group is executed sequentially and succeeds if all of
its components succeed. If any component fails, the entire
group fails immediately without executing the remainder.
Thus, if gunzip above were to fail, the entire group will fail
without executing tar.

The try construct is our primary tool for the Ethernet ap-
proach and is the heart of ftsh. Try attempts to execute a

1We thank Don Petravick for making this observation.

group within a given time limit. The contained group may
be executed any number of times within that limit. If it suc-
ceeds, then the try construct succeeds. If the limit expires
without a success, then the try expression fails. If the limit
should expire during the execution of a procedure, then that
procedure is forcibly terminated and the resources it con-
sumes are freed. For example, the previous example may
be attempted for 30 minutes:

try for 30 minutes
wget http://server/file.tar.gz
gunzip file.tar.gz
tar xvf file.tar

end

If the contained group should fail, then the try delays be-
fore attempting it again. The base delay is one second, dou-
bled after every failure, up to a maximum of one hour. Each
delay interval is multiplied by a random factor between one
and two in order to distribute the expected values. If the ex-
pected time of the operation is unknown, the try may also
be expressed as a maximum number of attempts, with or
without a time limit, such as try 5 times or try for 1

hour or 3 times.
The try may also be used to catch and react to failures

in the same manner as an exception in other programming
languages. The simple command failure is equivalent to a
failed external command or the throw command found in
other languages. No exception detail is provided to the pro-
gram, as none is available in a structured way to the shell.

For example:

try 5 times
wget http://server/file.tar.gz

catch
rm -f file.tar.gz
failure

end

The forany construct attempts to execute any single al-
ternative of a group to success. If one succeeds, then the
forany itself succeeds, setting the alternative variable to the
successful value. For example, this fragment attempts to
retrieve a file from any one of three named servers:

forany server in xxx yyy zzz
wget http://${server}/file.tar.gz

end
echo "got file from ${server}"

As the name suggests, the forall construct attempts to
execute all of its alternatives in parallel. If they all suc-
cessfully complete, then the forall returns success. If any
fails, all outstanding branches are aborted, and the forall
returns failure. For example, this fragment attempts to re-
trieve three files from the named server.



forall file in xxx yyy zzz
wget http://${server}/${file}

end

The number of alternatives that a forall may execute si-
multaneously is of course limited by any number of local
resources limits such as memory, disk space, or fixed kernel
tables. Thus, the creation of processes must be governed by
an Ethernet-like algorithm similar to that of try. We will not
address this issue any further in this paper, as the behavior
of try is enough to occupy our attention here.

Because try itself is a compound procedure with a re-
sult of success or failure, it may be nested, allowing for
failure conditions at each component. In the following ex-
ample, each attempt to retrieve the file is limited to five min-
utes, while the combined unpacking group is limited to one
minute or three attempts, whichever expires first. The outer
time limit of thirty minutes applies regardless of the depth
of nesting.

try for 30 minutes
try for 5 minutes

wget http://server/file.tar.gz
end
try for 1 minute or 3 times

gunzip file.tar.gz
tar xvf file.tar

end
end

Try may be placed within a forany or forall to add re-
silience to any one branch. It may also be placed outside in
order to create retrial of the whole tree or cancellation after
a time. For example, this fragment attempts to retrieve a
file for 1 hour, limiting each attempt at each server to five
minutes each:

try for 1 hour
forany server in xxx yyy zzz

try for 5 minutes
wget http://${server}/file

end
end

end

It is important to note that ftsh cannot be applied blindly.
Programs must be constructed with the understanding that
processes will be aborted and restarted. Thus, potentially
repeated actions must be idempotent. For example, the rm
command used above is given the -f option to instruct it to
return success if the named file does not exist.

Some abstractions require more effort. Due to the many
ways that a single command may be repeated, either par-
tially or to completion, the input and output streams of a
ftsh program may become quite confused with partial re-
sults. In most shells, this problem is attacked by using ex-
ternal storage to hold results in abeyance, creating a simple

form of I/O transaction. For example, this fragment redi-
rects the output and error streams to and from the file tmp,
thus pausing output until the command completes:

try 5 times
run-simulation >& tmp

end
cat < tmp

However, this approach introduces new problems. The
user must then worry about cleaning up the external stor-
age after a failure and must also provide unique names by
way of process ids or other identifiers. ftsh addresses this
problem by allowing programs to redirect standard input
and output to privately named variables via POSIX pipes.
Such variables may be stored in the shell’s memory directly,
or may be kept in an appropriate place in the filesystem ac-
cording to the user’s or administrator’s policy. Redirection
to variables takes the same form as redirection to files, ex-
cept that a dash prefixes the arrow operator:

try 5 times
run-simulation ->& tmp

end
cat -< tmp

ftsh is currently implemented in POSIX C as an inter-
preted language in a manner similar to that of the Bourne
or C shells. While executing a script, ftsh keeps a log of
varying detail about the program. Online or post-mortem
analysis may determine more detailed reasons for process
failure, the exact resources used to execute the program, the
frequency of each failure branch, and so forth.

Whenever ftsh creates a new child process, it allocates
a new POSIX session id with setsid. POSIX allows for
an entire process session to be terminated with a single
system call, allowing for easy cleanup when try timeouts
occur. Such processes are first gently requested to exit
with SIGTERM and later forcibly killed with SIGKILL. Al-
though effective in most cases, this technique has limits. A
process may escape the control of ftsh by manually creating
a new session id. Therefore, ftsh is appropriate as a resource
management tool, but not as a security mechanism.

Exactly this problem occurs when one ftsh script exe-
cutes another as an external command. In this case, the
parent shell, the child shell, and the grandchildren all run
in different process groups. ftsh handles this gracefully by
trapping the warning SIGTERMs from its parent and then
reacting by killing its own children. The timeout which
leads to a forcible kill must be shorter in the child script;
this is passed through an environment variable. This tech-
nique has worked so far in practice, but we must acknowl-
edge that, in a heavily loaded system where the delivery of
signals may be delayed, it is possible that a grandchild could
escape destruction.



In other operating systems, such as Windows NT, child
processes may be created within involuntary nested group-
ings, allowing for their reliable destruction on termination.
ftsh would have a more reliable implementation on such a
platform. Although the race condition is small and yet to
be observed, it is unfortunate that a proper facility is not
available within POSIX.

5. Applications

To demonstrate the resilience of the Ethernet approach,
we will present three scenarios relevant to grid computing:
job submission, disk allocation, and data transfer. In each
case, we will demonstrate how system performance scales
with the number of clients accessing a shared resource. We
must preface these explorations with a caveat offered by
several network researchers:

No real Ethernet should be operated this way. [6]

Our intention is to demonstrate resilience to resource
contention. Grid computing systems will suffer frequent
and unexpected bursts of contention, but this should not
be considered an appropriate continuous mode of operation.
Systems should be engineered with sufficient resources for
production loads. The initiation of Ethernet protocols to
deal with contention should be logged and noted to admin-
istrators so that persistent overloads may be accommodated.

To evaluate each scenario, we show three possible
client algorithms, all implemented with minor variations on
scripts written with ftsh. A fixed client aggressively repeats
its assigned work without delay and without regard to any
sort of failure. An Aloha client uses the ordinary ftsh try
structure to repeat a work unit with an exponential backoff
and random factor in case of failure. An Ethernet client
uses the same structure, but additionally adds a small piece
of code to perform carrier sense before accessing a resource.
We will see that such small additions have a significant ef-
fect on system stability.

In each case, we will show that fixed clients scale poorly
under high loads, frequently crashing to zero throughput.
Aloha clients might be described as “hobble in” engineer-
ing. Although they are affected significantly by resource
contention, they generally manage to maintain some level of
throughput, allowing the load to be worked through. Ether-
net clients maintain higher levels of throughput even under
high loads by measuring the resource state and backing off
before contention becomes unbearable.

Our first scenario consists of a large number of clients
attempting to submit jobs into a Condor system. Each is
trying to run a submitter to communicate with a Condor
schedd. The schedd is an agent that works on behalf of
a grid user, keeping jobs in a persistent queue while finding
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Figure 1. Scalability of Job Submission

sites where they may run. A Condor submitter is a stan-
dalone executable that examines a job description file, con-
nects to a schedd, and transfers the necessary details and
files. We expect that large numbers of submitters will com-
pete for a schedd in systems such as Chimera [10], which
manage large trees of dependent tasks for a user, dispatch-
ing new jobs as old ones complete.

When composing this scenario, we postulated that there
would be contention for a number of expected resources:
network connections, physical memory, perhaps even the
disk on which the job queue is stored. In fact, it came from
an unexpected source: the number of available file descrip-
tors (FDs.) Most systems go to great lengths to manage
the use of physical resources such as disks, memories, and
CPUs. This overlooked resource is just as vital in a system
under a heavy load.

The Aloha client in this scenario is represented by the
simple program:

try for 5 minutes
condor_submit submit.job

end

The Ethernet variant senses the “carrier” of competing
clients when the number of free FDs falls below a critical
value and forces the client to defer:

try for 5 minutes
cut -f2 /proc/sys/fs/file-nr -> n
if ${n} .lt. 1000

failure
else

condor_submit submit.job
end

end

Figure 1 shows the throughput of a varying load of sub-
mitters competing for a schedd. Each point represents the
number of jobs submitted in five minutes by the given num-
ber of submitters. The fixed client fails completely above
a load of 400 submitters. The Aloha client settles into an
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Figure 2. Timeline of Aloha Submitter
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Figure 3. Timeline of Ethernet Submitter

unstable throughput of 100-200 jobs per five minutes, but
continues to operate as load increases. The Ethernet client
maintains about 50 percent of peak performance under load,
due to competition for managed resources, such as the CPU.

Figures 2 and 3 clarify the reason for the throughput
difference between the Aloha and Ethernet clients. Both
figures show the progress of 400 clients continuously sub-
mitting jobs to a schedd over the course of thirty minutes.
In each figure, the heavy dotted line shows the progressive
number of jobs submitted, while the lighter line shows the
number of available FDs. The Aloha clients immediately
consume all of the FDs then immediately fail and backoff.
The random retry factor begins to distribute the clients in
time, and the consumption of FDs begins to rise to normal
levels again. At several points, the number of available FDs
spikes upwards. This is due to the schedd itself failing when
it cannot allocate enough FDs. This, in turn, causes all of
its connected clients to fail and backoff, serving as sort of a
“broadcast jam” when load is extraordinarily high. The Eth-
ernet client attempts to preserve a critical value of file de-
scriptors. The result is that an acceptable number of clients
are continually running, keeping the FDs at a high utiliza-
tion.

Our second scenario is a producer-consumer problem for
a shared filesystem. A number of jobs running in a re-
mote cluster produce data whose size is not known before-
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Figure 4. Buffer Throughput
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Figure 5. Buffer Collisions

hand. As they run, they place their output files into a shared
filesystem buffer of 120 MB, where a consumer process col-
lects the outputs and transmits them off to a remote archive
in a manner similar to that of Kangaroo. [28]

Each producer is a continuous loop, producing an output
file of random size between 0-1 MB every second. If the
output cannot be written, it is deleted and a fixed, Aloha, or
Ethernet retry technique is applied as above. If the output
is completed, it is atomically renamed to the form x.done
to advise the consumer that it is complete. The consumer
continuously reads files at a rate of 1 MB/s, deleting each
as it is consumed.

In the previous scenario, we used a “reasonable” fixed
value to give the client some knowledge of when resources
were running low. The problem of disk space is harder,
because a client may not even know what the size of its
output will be. However, the client of this scenario does
have the advantage of observing the other files in the buffer,
both complete and incomplete. To estimate the available
disk space, the Ethernet client assumes the incomplete items
in the buffer will be the same size as the average of the
complete files, and subtracts that from the free disk space
reported by the file system. If there is any space remaining,
the client proceeds to write, otherwise it fails and backs off.

Figure 4 shows the relative throughput of each client dis-
cipline. In a manner quite similar to that of the first scenario,
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Figure 6. Aloha File Reader
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Figure 7. Ethernet File Reader

the fixed and Aloha disciplines do not scale. The Ethernet
approach scales acceptably, falling off only slightly under
heavy load.

The reader may question whether it is wise to design a
system without a mechanism for allocating storage space in-
dependently of data transfer, such as that found in NeST [4],
SRB [3], and SRM [24]. Although we certainly encour-
age the use of such devices, they are not deployed in every
place where output data is written, nor is it clear what al-
location policy would be appropriate when output sizes are
not known. Further, the actual process of allocation itself
may be subject to contention. We hold that any system has
some unreservable resources that may be a source of con-
tention when under heavy loads.

For our third scenario, we demonstrate a programmable
solution to the problem of “black holes.” Black holes are
services that endlessly block or terminate any interacting
client process, thus slowly bringing a system to a halt. This
experimental setup consists of three web servers that repli-
cate a read-only file service to three clients. Each client
repeatedly attempts to read a 100 MB file from a server
chosen at random. This takes about 10 seconds under ideal
conditions. Each server is single-threaded, allowing only
one client at a time to transfer data. One of the three is
a permanent black hole. It permits clients to connect, but
does not provide data or voluntarily disconnect.

The Aloha client in this system has a problem. It must
select a timeout small enough that it will not wait unneces-
sarily if it should accidentally connect to a black hole. On
the other hand, a timeout that is too small may accidentally
abort a legitimate transfer that has been delayed for other
reasons. We choose a timeout of sixty on the unsatisfactory
basis that it is a good round number:

try for 900 seconds
forany host in xxx yyy zzz

try for 60 seconds
wget http://$host/data

end
end

end

An Ethernet client attacks this problem by developing
an inexpensive test to see if a server is available. It simply
attempts to fetch a well-known one-byte file. If that should
succeed, it proceeds to download the large file with a fair
assurance that the server is working. If it should fail, the
server may be a black hole or simply heavily loaded. In that
case, the forany chooses another server. For example:

try for 900 seconds
forany host in xxx yyy zzz

try for 5 seconds
wget http://$host/flag

end
try for 60 seconds

wget http://$host/data
end

end
end

Figures 6 and 7 compare the throughput of these ap-
proaches. Predictably, the Aloha clients occasionally all fall
on the single black hole server and must wait the full sixty
seconds before failing and trying elsewhere. The Ethernet
clients are much more effective and suffer from no such hic-
cups.

6. Discussion

The strength of the Ethernet approach is its wide applica-
bility and performance robustness to a variety of situations.
When the source of contention is unknown to the program-
mer, some level of throughput can be maintained by using
simple exponential backoff to work through the burst. If
more knowledge about the system is available, an appropri-
ate “carrier sense” can be implemented to improve through-
put.

We do not advocate that blindness to the cause of an er-
ror is optimal. Indeed, we would prefer to use tools that
describe errors to a sufficient level of detail. But, construct-
ing an interface with the right level of detail is difficult, and



perhaps cannot be done in a way that satisfies all users. To
this end, we consider the Ethernet approach to be valuable
and necessary, but not ideal.

The major weakness of the Ethernet approach lies in de-
tecting errors in the specification of a task. For example,
a remotely executed job may fail because the given exe-
cutable is corrupt or the arguments are simply wrong. A
blind Ethernet approach may attempt such a job over and
over with no hope of success. How are such situations to be
handled?

The appropriate solution is to gain more information
through positive activity. For example, ftsh may be used to
test an executable locally on a short input file before submit-
ting it elsewhere. Or, the same program could be attempted
at multiple remote sites before it is declared a failure. Or,
the presence of files named in the arguments can be tested
before execution. None of these tests is an absolute guar-
antee, but serves to reduce the possibility of specification
errors discovered at runtime.

This idea is used to great effect in Autoconf [19], a tool
for configuring source code to the details of a compiler and
operating system. Autoconf works by simply attempting
what the user desires to do, rather than attempting to reason
about it. For example, the ability to memory-map a file is
probed by compiling a small program to do just that, rather
than make inferences based on the system details. The for-
mer is a far more reliable and portable test.

The Ethernet approach is well known in lower level soft-
ware. For example, the NFS protocol employs exponential
backoff in the presence of failures, and the wget utility em-
ployed above has a built-in facility for retrying failed trans-
fers. These and similar ideas have historically been used
at or below the process level, perhaps in an attempt to hide
from the end user the ugly realities of reliable software.

The same techniques are necessary in glue languages
for several reasons. Even when the underlying tools are
“clever,” the costs of communication and process invocation
are themselves a source of failure and resource contention
before clever tools even take control. Sometimes tools may
retry failures beyond the needs of the calling user, wasting
both resources and time. In conventional languages, can-
celing such a runaway activity is quite complex, because
the aborted thread may leave memory, monitors, and other
resources in an unknown state. In contrast, a POSIX pro-
cess is a natural unit for cancellation, because it associates
a thread of control with all the resources it consumes. Mem-
ory is freed, files are released, and network connections are
forcibly broken, triggering exceptions with peers. This abil-
ity to cleanly abort a running task makes the Ethernet ap-
proach uniquely suited to high-level programming.

7. Related Work

A number of methods have been proposed for dealing
with failures and timeouts in general-purpose languages in
a systematic way. The most widespread language struc-
ture for dealing with failures is the exception. [12] Various
languages differ on critical elements of the exception con-
cept, such as the requirement that a procedure declare all
exception types that it may throw. This precise problem has
driven an argument [5] against their use. ftsh side-steps this
debate by using only untyped exceptions. The notion of a
distinct error-value that short-circuits sequential evaluation
appears in several languages. An early example is the fre-
turn feature of Snobol. [13] Instead of a distinct error-value,
many shell languages allow the explicit short circuiting of a
group of commands with the && delimiter. This behavior
is implicit in ftsh. The brittle property of ftsh bears a sim-
ilarity to a special switch in the C shell which causes any
failure in a sequential list to abort the entire script.

The integration of time and alternation into general-
purpose languages has been less successful. Practical tools
such as pdsh [11] attack the problem of running a com-
mand on many nodes of a cluster. The notion of an alter-
native command (like forany) succeeding on the comple-
tion of any of its branches is proposed by Hoare’s CSP. [14]
A variation is introduced by Ada, [26] which permits a de-
fault timeout in a select to permit real-time termination con-
straints. Although ftsh expresses the expiration of time as
an exception which unwinds the stack, this has not been
the case in most other languages. For example, in POSIX
C [16], an alarm clock raises a signal, which generates a
new context to handle it, rather than raising an exception
in existing threads. Even with a mechanism to associate a
timeout with a running thread, the forcible cancellation of
threads in a running language is difficult or impossible, be-
cause a thread runtime does not associate program resources
with the thread that allocated them.

8. Conclusion

I would therefore like to posit that computing’s
central challenge, “How not to make a mess of
it,” has not been met. [9]

Current grid computing systems are so complex as to
defy the ability of even specialists to deploy and use them
without going to extraordinary lengths to tune and debug.
We humbly admit to contributing a fair share of the “mess.”
These systems are so hard to use in part because they
are sensitive to an extraordinary set of unexpected failure
modes.

Our contribution is the proposition that failures should
not be hidden in the depths of a system. Rather, the like-
lihood of failure and the mechanisms for fault tolerance



should be expressed at the highest levels of programming
in simple terms such as retry and alternation. This is neces-
sary because both users and designers assemble systems out
of disparate components that cannot be expected to choose
the right remediation strategy among themselves.

Just as a single obnoxious customer can disrupt a movie
theater, any misbehaved client can ruin the Ethernet ap-
proach. If the clients of a service cannot be trusted to
play fairly, then the only solution is to physically isolate
them. This could be accomplished to a certain extent if sys-
tems allowed guaranteed allocations for all resources. How-
ever, even such systems have some uncontrolled, shared re-
sources: the entry point for requests. Whether it is a ticket
window at a movie theater or a TCP port for a web server,
any system has some resource that must be consumed coop-
eratively. The Ethernet approach is needed wherever such
resources are found.

Drawing on existing languages, we have proposed a sim-
ple language to allow the user to express fault tolerance – lit-
erally, the user’s limit of tolerance for failures – in a simple
and concise manner. The Ethernet approach to distributed
computing seeks to avoid disasters while providing accept-
able performance with a minimum of fuss in a wide variety
of situations.

Further information about ftsh may be found at
http://www.cs.wisc.edu/condor/ftsh.
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