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A B S T R A C T   

Mechanisms for remote execution of computational tasks enable a distributed system to effectively utilize all 
available resources. This ability is essential to attaining the objectives of high availability, system reliability, and 
graceful degradation and directly contribute to flexibility, adaptability, and incremental growth. As part of a 
national fabric of Distributed High Throughput Computing (dHTC) services, remote execution is a cornerstone of 
the Open Science Grid (OSG) Compute Federation. Most of the organizations that harness the computing capacity 
provided by the OSG also deploy HTCondor pools on resources acquired from the OSG. The HTCondor Compute 
Entrypoint (CE) facilitates the remote acquisition of resources by all organizations. The HTCondor-CE is the 
product of a most recent translational cycle that is part of a multidecade translational process. The process is 
rooted in a partnership, between members of the High Energy Physics community and computer scientists, that 
evolved over three decades and involved testing and evaluation with active users and production infrastructures. 
Through several translational cycles that involved researchers from different organizations and continents, 
principles, ideas, frameworks and technologies were translated into a widely adopted software artifact that 
isresponsible for provisioning of approximately 9 million core hours per day across 170 endpoints.   

1. Introduction 

In 2014, the Open Science Grid (OSG) consortium announced to the 
sites in its Compute Federation that it would base its computing resource 
management technologies on the HTCondor Compute Entrypoint (CE) 
[1]. The HTCondor-CE enables remote submissions of acquisition re-
quests to a compute resource. Developed and maintained on top of 
technologies from the UW-Madison Center for High Throughput 
Computing (CHTC), this edge service replaced the Globus Gatekeeper 
adopted by the OSG upon its inception in 2005. The announcement was 
a major milestone in a project that began two years earlier within the 
OSG with roots that extended into more than a decade of collaboration 
with multi-disciplinary projects in Europe, two decades of collaboration 
between Computer Science and High Energy Physics (HEP), and more 
than three decades of distributed computing research and experiences. 
Over time we witnessed processes of translational [2] nature that played 
a key role in reaching this milestone. Today, more than 170 endpoints at 
more than 65 sites worldwide use the HTCondor-CE to facilitate sharing 
of computing resources via remote acquisition. 

Like other elements of the evolving HTCondor Software Suite 
(HTCSS) [3], the HTCondor-CE project has a starting date but has no end 
date in sight. In the context of our work, successful translational projects 
start by the articulation of the need for a capability by a committed 
customer and continue as long as the software artifact is deployed. The 
commitment that triggered the current translational cycle came with a 
2012 assignment by the OSG Executive Team to its “Technology In-
vestigations” activity: under the leadership of Bockelman and in 
collaboration with CHTC, develop a new strategy for the OSG Compute 
Entrypoint. The very nature of a software artifact that provides a critical 
capability in a cyberinfrastructure ecosystem requires a commitment to 
long term evolution founded on mutual trust and sustainability. The 
long partnership between OSG and CHTC has been facilitating such a 
commitment. 

The HTCondor-CE embodies principles, ideas and technologies that 
have been pioneered and developed initially by the Condor Project that 
started in 1984 [4] and more recently by the CHTC. As a HTCSS element, 
the HTCondor-CE leverages software components and partnerships that 
were developed over three decades by the group led by Livny. The 
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hallmark of these partnerships has been the translation of advances in 
distributed computing into scientific discovery through an open High 
Throughput Computing (HTC) software ecosystem. 

In our experience, the roots of translational projects are typically 
diverse and run deep. While recent changes in the technology landscape 
have impacted the evolution of the HTCondor-CE, the abstractions 
presented and the architecture of the software have been established for 
decades. The HTCondor-CE includes elements of the HTCSS that were 
first introduced two decades ago, such as the ClassAds language to 
describe acquisition requests, and resources, and matchmaking [5] to 
route requests to resources. As in the case of Translational Medicine, the 
software delivered by a translational computing project has to be of 
value and of low risk to the target community. Namely, the software 
must be dependable, reliable and secure. Achieving and sustaining these 
goals requires creative software reuse, adaptation of new technologies 
and disciplined software engineering. 

The community served by the OSG is international with a significant 
involvement of the Large Hadron Collider (LHC) experiments at CERN 
[6]. This entails a close relationship with the Worldwide LHC 
Computing Grid (WLCG) [7]. In 2005, the OSG deployed the gatekeeper 
software widely adopted by the WLCG. The WLCG would later decide to 
replace its gatekeeper. The search for an alternate technology that was 
conducted by the European gLite project [8] offered the Condor Project 
an opportunity to develop a prototype that would underpin many of the 
later HTCondor-CE technologies. In 2007 the gLite project eventually 
selected a different technology for its gatekeeper (CREAM [9]), bringing 
the previous translation cycle to a halt. At the time the OSG decided not 
to follow the WLCG. 

The HTCondor-CE project builds on a close and productive part-
nership between the CHTC and the HEP community. It started in 1990 
with researchers from Nikhef in the Netherlands [10] and continued in 
1995 with researchers from INFN in Italy [11]. A key element of the 
HTCondor-CE has been developed and maintained by the INFN and the 
concept of “flocking” across HTCondor pools was developed through the 
Nikhef collaboration. In the early 2000s, these partnerships expanded to 
additional organizations and projects and were formalized through 
three US projects (PPDG, GriPhyN and iVDGL) that led to Grid3 [12] and 
the OSG and through two European projects led by CERN (European 
DataGrid and EGEE). This groundwork helped develop capabilities that 
serves the entire spectrum of open science domains today. A number of 
WLCG sites in Europe (including CERN) and Asia have adopted the 
HTCondor-CE. 

The paper provides an overview of the motivation, functionality and 
architecture of the HTCondor-CE and presents the history and elements 
of the translational project that took a problem statement articulated by 
a customer and delivered a widely deployed software tool. The project is 
now eight years old with a history that goes back almost four decades. 

2. Background and context 

The application of the translational principles embodied in the 
HTCondor-CE project started with the realization, in the late 1990s, that 
the scale and complexity of the data-taking for the LHC exceeded the 
capabilities of CERN in-house compute resources, of physicist-driven 
software development that had carried the HEP field on for decades, 
and of available commercial solutions [13–16]. Rather than scale back 
the physics goals, the LHC reached out to Computer Science groups, 
finding the nascent idea of wide area distributed computing promoted in 
the context of “grid computing” [17], a neat fit to allow the LHC ex-
periments to implement a multi-tier infrastructure that leveraged re-
sources at sites around the world in addition to the resources at CERN. 
Each of these labs and universities provided their computational re-
sources through a batch system, such as HTCondor, LSF, or PBS, that 
users would access and submit computational jobs through a local login 
host via SSH. When faced with the need to share these resources with a 
globally-distributed user community, the initial approach – based on the 

model developed by the Globus project [18] – was to provide a mech-
anism to submit these jobs remotely. The software that enabled remote 
job submission was termed the gatekeeper [18]. A compute cluster 
accessible via such a remote job submission gateway was considered a 
WLCG Compute Element or, in short, a CE. 

The paradigm of remote job submission was not particularly suc-
cessful: it was frustrating to end-users when a compute element would 
lose jobs or when jobs were sent to a site where they got “stuck” in a 
remote queue waiting to be selected by the local scheduler. This 
approach of “early binding” hinged on reliably predicting the behavior 
of job queues, which proved unreliable. Error propagation across the 
software layers was difficult. These pitfalls of a job-centric computing 
model are covered by Sfiligoi [19]. 

2.1. The OSG compute federation 

The OSG gatekeeper services consequently shifted from managing 
jobs to acting as a resource acquisition service. The “CE”, in its new 
function as “Compute Entrypoint,” securely manages various local re-
sources: clusters where access is granted by a batch system, VMs 
managed by “cloud” services, or other CEs. 

In the OSG ecosystem, the remote clients of CEs are no longer end- 
users but rather “factories” that represent organizations responsible 
for managing the jobs submitted by end-users; rather than end-user jobs, 
the factory service sends to the CE Resource Acquisition Requests 
(RARs), commonly referred to as “pilots.” Once a resource is allocated by 
the Local Resource Management System (LRMS), a pilot process is 
launched and joins a pool of resources managed by the organization that 
operates the factory. The CE can be viewed as a service that routes RARs 
between the factory and the service managing the local hardware. 

A resource management overlay is established by the organizations 
that manages the single logical pool of acquired resources, assigning 
them end-user jobs (“payloads”), with tight control over reporting and 
error propagation. Further, since payloads are not committed to a 
resource until it is available (late binding) and executed by the deployed 
pilot, users are not exposed to the scheduling vagaries and the APIs of 
dozens of autonomously managed LRMS’s. 

GlideinWMS is used to provide factory services to most OSG orga-
nizations [20]; in GlideinWMS, the HTCondor scheduler - using 
“HTCondor-G” – submits and manages RARs at remote CEs [21]. The 
scheduler is also used to manage the deployed pool of resources. Upon 
start-up, the pilot downloads, configures, and launches an HTCondor 
execute node which securely joins the HTCondor pool managed by the 
organization. At sites where HTCondor is also the LRMS, OSG leverages 
the fact that there is a consistent software suite from factory to CE to 
LRMS to resource pool, minimizing information loss due to ‘translation’ 
between the layer as each layer communicates using the ClassAd 
language. 

2.2. Functionality needed by a CE 

To demonstrate the paths between desired functionality and basic 
research we highlight four core CE functions required by the OSG along 
with the corresponding basic technology research:  

1 Manage Resource Acquisition Requests: The CE has to track RARs 
throughout their lifecycle while communicating pilot, status, ac-
counting information, error information, and log files back to the 
factory. 

Research: For HTCondor-G, the HTCSS scheduler (the “SchedD”) is 
used to manage the RARs (each request is represented by a job in the 
SchedD) even though RARs are fulfilled by an external system. This al-
lows the same interface to be used regardless of whether the entity 
represents a job executed by HTCSS itself or another LRMS. Work on the 
architecture of HTCondor-G dates back to 2001 [21]. This is enabled by 
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the semi-structured properties of the ClassAd language that is used to 
represent all entities throughout the HTCSS.  

2 Interacting with the LRMS. HTCondor-G was originally designed to 
execute a job in a remote batch system using the Globus Gatekeeper. 
However, the design evolved to be highly modular so new modules 
could be written for other services providing a job-like interface. For 
example, since the lifecycle of a virtual machine in a cloud system 
goes through states that can be mapped to batch job states (idle/ 
pending, running, removing), the HTCSS scheduler can manage 
virtual machines in multiple commercial cloud providers. 

Research: Primarily, the resources provided by OSG sites are 
managed by a variety of batch systems. Matching interfaces have to be 
implemented, tested and maintained. The BLAHP [22], software origi-
nally developed as part of both the gLite CE [23] prototype and CREAM 
services (see Section 3) is an example of architecture and protocol for 
this purpose.  

3 Translate from remote RAR to local RAR: The factory should not 
have detailed knowledge about the local resources. Rather, it is 
important that RARs express generic requirements and are only 
augmented with local information once at the site. This facilitates the 
autonomy of the local site administrator. 

Research: The HTCSS developed the concept of a JobRouter in 2009. 
It is based on a service that passively monitors the queued jobs and can 
take an incoming job, place it on hold, follow a specified set of trans-
formation rules encoded in the ClassAd language to create a local job, 
and submit the derived job back into a SchedD for local execution [24].  

4 Externally authenticate and authorize actions: The CE ensures 
the resource provider the incoming RARs are appropriately autho-
rized. This is most commonly done by authenticating the remote 
entity to a global identity, mapping this to a local identity, and then 
applying a set of authorization policies based on that local identity. 

Research: The CEDAR communication framework [3] developed by 
HTCSS is based on protocols which negotiate an authentication mech-
anism with a remote entity, establish an identity, and apply a set of rules 
to determine whether the identity is authorized for an action. As the 
authentication protocol itself is negotiated, CEDAR has the ability to 
evolve; while GSI [25] is currently the most popular protocol within the 
OSG, CEDAR can utilize different and evolving technologies such as the 

capability-based SciTokens [26]. 

2.3. The HTCondor-CE architecture 

Four elements of the HTCSS compose the HTCondor-CE as illustrated 
in the flow of a RAR from the factory HTCondor-G to a HTCondor-CE to 
the LRMS in Fig. 1. The elements were enhanced in the course of this 
translational cycle to meet specific needs of a CE service and are now 
standard features of the software suite. The HTCondor-CE meets the 
requirements set forth within Section 2.2 solely through a special 
configuration of these elements. The HTCondor-CE consists of the 
following elements:  

• SchedD: The SchedD authenticates the remote client and accepts the 
incoming RAR R. These requests are managed as job entities in the 
internal SchedD database.  

• JobRouter: The JobRouter takes the generic RAR (R) directly from 
the SchedD database that is logged to disk and customizes it to make 
an equivalent local RAR (B) and submits it back to the SchedD. The 
JobRouter is responsible for ensuring updates to R and B follow a 
two-way mirroring protocol. For example, the JobRouter will update 
R’s state to running when B is marked as running; if the remote client 
removes R, the JobRouter will remove B.  

• BLAHP: The RAR B is represented as a job in the HTCondor’s “grid 
universe”. In the SchedD, this indicates the job is to be managed by 
an external entity — in this case, the BLAHP. The BLAHP is given the 
description of B and is responsible to convert this description into a 
job J for the LRMS; the SchedD will also invoke the BLAHP to 
perform status updates and job removals. Currently supported 
LRMSs are Grid Engine, HTCondor, LSF, PBS Pro/Torque, and Slurm.  

• Collector: In the case of GlideinWMS pilots, the collector aggregates 
information from the running pilots and forwards it to the OSG in-
formation service (also a HTCSS collector). This includes CE contact 
details (allowing for service discovery), a summary of the CE 
configuration and RAR monitoring in the HTCondor-CE. 

3. Translation process 

As noted, much of the translational activity was driven by collabo-
ration between CS and HEP. To borrow from a different definition of the 
word translation, the collaboration between the two disciplines required 
projects to “translate one’s own disciplinary jargon into a language that 
can be understood by others.” [27] It also required that the outcomes 
and artifacts produced by the CS research possess rich enough semantic 

Fig. 1. The architectural components of the HTCondor-CE. Here, R represents the incoming RAR from the remote client. This is transformed according to policy into 
a local “blah” job, B. The SchedD also tracks B’s lifecycle in its internal database and uses the blah to interact with the LRMS. The blah will take B, converted to an 
appropriate batch job J, and submit it to the LRMS. 
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properties to allow restructuring or re-combining for use in new and 
shifting contexts. This led to the identification of gaps in abstractions 
then to the development of bridges and connections between the 
collaborating parties. 

Throughout the early 2000’s, the HTCondor project developed the 
frameworks and technologies that would eventually underpin the 
HTCondor-CE. While the individual components were developed to 
advance distinct research goals, all were driven by a vision of enabling 
Distributed High Throughput Computing on a global scale. The move 
from the lab (the CHTC at the UW–Madison campus) to the locale (initial 
deployments on OSG) to the community (widespread production de-
ployments) would span 12 years. This includes an initial failed trans-
lation cycle, international collaboration, and the initial adoption by 
leaders in the community. The timeline – from initial research through 
community adoption is summarized in Fig. 2. 

3.1. From lab to the locale 

A first attempt at developing a CE based on the distributed 
computing principles underpinning HTCondor’s basic research was the 
‘gLite CE’ [28] prototype. It was an early attempt to translate the ab-
stractions and technologies of the HTCSS into a functioning CE that 
could be deployed by an organization. In the gLite CE architecture, the 
site gatekeeper service (the Globus Gatekeeper software) would launch 
on behalf of an organization an unprivileged version of the HTCSS 
SchedD. In this way, each LHC experiment in the WLCG could utilize a 
bespoke CE, customized for their needs, policies, and potentially pro-
tocols. The SchedD process, specific to the remote organization, would 
then forward the jobs to the LRMS using the newly developed BLAHP. 
This approach offered more autonomy to the organization in how they 
used the remote resources. These spheres of autonomy are critical to the 
effectiveness of a distributed system – but come at a cost of complexity. 
Contrasting with Fig. 1, there would be multiple SchedD’s on the LRMS 
head node, the early prototype did not include a JobRouter to customize 
jobs (it was assumed the external submitter would customize based on 

the available global information in discovery services [29]), and the CE 
service was still job-oriented rather than RAR-oriented. Had the WLCG 
followed this approach, organizations could have deployed 
RAR-oriented CEs as they adopted the pilot concept. 

The prototype development effort stemmed from the gLite project’s 
desire to replace the Globus gatekeeper as the service provider and sole 
port of entry for the remote resource. During this development effort, 
the gLite project investigated two distinct technologies: the gLite CE and 
the CREAM CE [30] developed by INFN. After an internal evaluation of 
both technologies, in 2007, gLite decided to adopt the CREAM CE. While 
we were not privy to the decision-making process, we believe this 
highlights the fact the customer makes the decision – and can include 
considerations beyond simple technical items. This fact that adoption is 
a complex, sometimes non-technical, process is a major obstacle in 
translational work. 

At the time, OSG decided to stay with Globus Gatekeeper and adopt 
neither of the other CEs – the need to transition from Globus was not 
seen as urgent and there was no desire to undertake a software engi-
neering project at the time. Given neither the OSG nor gLite decided to 
adopt the gLite CE approach, this translation was essentially a failure. 
Despite the failure to reach the target community, a positive outcome of 
this era was further development of the software (HTCSS, BLAHP) that 
would eventually underpin the HTCondor-CE. For example, the BLAHP 
was integrated as part of HTCSS releases and HTCondor gained signifi-
cant capabilities to accept jobs through remote submission. HTCSS was 
enhanced with the HTCondor-C capability that supports remote sub-
mission between two SchedDs 

In parallel to the gLite CE prototype work, the HTCondor project 
developed the concept of a "SchedD on the side", which acts like a 
"shadow" of a SchedD, creating a new job that is derived from and linked 
to the original job in the SchedD after a specified transformation. This 
approach leverages the HTCSS view of a job as a chain of job instances 
anchored by the original job submitted by the end-user and dynamically 
expanding and shrinking through delegation to other services. The 
concept also leverages the log-based technology used by the SchedD to 

Fig. 2. A timeline of major events in the lifetime of the HTCondor-CE, from initial work on HTCSS, to components preceding the HTCondor-CE, to details from the 
CE’s translation. 
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manage a disk image of the in-memory set of job ClassAds. Trailing the 
transaction log enables the JobRouter to shadow the current SchedD 
state and keep an up to date, in-memory image of the collection of jobs 
managed by the shadowed SchedD service. 

During this period, the gLite project would continue to integrate the 
CREAM CE and OSG would base its CE product on software from Globus. 
For their gatekeeper, Globus would adopt a Java-based SOAP web 
service-based approach for GRAM4 [31] before ultimately abandoning 
this approach for an evolution of its original software stack in GRAM5 
[32]. 

The next attempt to translate HTCSS as a CE for the Distributed High 
Throughput Community began in 2012, when the OSG decided to 
investigate alternatives to the Globus Gatekeeper; this new investigation 
was triggered by uncertainty in the future support for the Globus 
Gatekeeper component and the opportunities afforded by the earlier 
transition to the resource acquisition model. Over the next 6 months, the 
OSG internally evaluated two options: the HTCondor-CE, based upon 
HTCSS and developed by Bockelman, or the CREAM CE. Given HTCSS 
was already a central component of many existing pieces in the OSG 
technology stack — including the GlideinWMS resource management 
overlay — the HTCondor-CE (as described in Section 2.3) was built from 
familiar technologies and did not add dependencies on new external 
software providers. 

While the HTCondor-CE has several overlapping ideas with the gLite 
CE, it was a completely new project, initially sharing no developers or 
code. Compared to the prior gLite CE, the HTCondor-CE prototype was 
simpler — as the HTCondor SchedD was running as a privileged 
executable, this process could serve all clients of the CE, regardless of the 
mapped Unix user of the client. The HTCondor-CE would also perform 
the authentication and authorization of the remote entity through 
invoking the Globus GSI libraries as opposed to relying on a separate 
gatekeeper process to authenticate clients prior to HTCondor starting. 
Finally, by using Globus GSI for authentication and LCMAPS [33] for 
authorization callouts, the CE would rely on the same infrastructure as 
the rest of the community, helping to gain acceptance. The 
HTCondor-CE is seen as a highly customized configuration of HTCSS as 
opposed to a major software engineering project by itself. 

The initial release of HTCondor-CE was done in May of 2012 and 
showed functionality for two LRMS’s (HTCondor and PBS) — while 
functional, it was still in the ‘laboratory’. This initial release was hard-
ened in the OSG Integration Test Bed (ITB), which allowed for internal 
testing and integration of HTCondor-CE with the rest of the OSG Soft-
ware Stack. After completion of testing in this “laboratory”, HTCondor- 
CE was released to the OSG in its November 2013 production release. 
The first production deployment was in 2013 at Nebraska; another early 
adopter was Brookhaven National Laboratory (BNL) in 2014. After these 
initial successes, the OSG decided to officially transition to using the 
HTCondor-CE as the base for its OSG CE product; at the time, both 
HTCondor-CE and GRAM were supported as “backends”. 

The two largest resource providers in the OSG Compute Federation 
are the U.S. ATLAS and U.S. CMS operations programs; their adoption of 
the new software was both a critical test of its functionality and a vote of 
confidence in the technology. The U.S. CMS operations program started 
their transition to the HTCondor-CE in April 2014 while the engagement 
with U.S. ATLAS began in June 2014. The work with ATLAS benefited 
from a contributor who was both a member of the OSG release team and 
managed the U.S. ATLAS CEs at BNL (deploying the HTCondor-CE in 
August 2014). Other sites helped expand the functionality as additional 
LRMS’s were integrated; for example, SLAC helped contribute and test 
the LSF support and corresponding documentation starting June 2014; 
SLAC eventually moved their endpoint to production in March 2015. 
Similarly, native Slurm [34] support would occur over the next year. In 
August 2015, the OSG announced that it would drop support for Globus 
GRAM completely in the following year, beginning HTCondor-CE’s 
transition from the locale to the community [35]. 

3.2. From locale to the community 

We consider the OSG decision in 2015 to base its computing software 
on HTCondor-CE as the first indicator that the software begun its tran-
sition to the community — the software was increasingly critical to 
CHTC stakeholders and provided core functionality to the OSG. A second 
important milestone for the HTCondor-CE was its adoption by CERN. In 
2015, CERN was in the process of adopting HTCondor as a LRMS and 
evaluating new CE technologies. Eventually, CERN decided to also use 
HTCondor-CE — largely based on the strength of the integration with 
other components of HTCSS and that it would only depend on a single 
software provider (CHTC) for both the LRMS and the CE. While HTCSS 
has been used in the WLCG beyond the OSG, the CERN endpoints were 
the first non-OSG deployment of the HTCondor-CE. 

Once proven in the locale, the core architectural components of the 
HTCondor-CE have remained relatively fixed. As usage of the CE spread, 
additional integrations needed to be performed in order for the software 
to work in new communities. For example, while the native information 
service mechanism is the HTCSS collector (as shown in Fig. 1), in Europe 
the BDII is used for service discovery [29] and support had to be 
contributed to the HTCondor-CE software. Other differences at Euro-
pean sites included integration of the new CE with the local accounting 
software (APEL [36]) and authorization service (Argus [37]). 

While the HTCondor-CE derives from the widely used HTCSS and 
uses the same authentication and authorization libraries, it is still a 
complex service exposed to the internet; several sites involved in this 
transition process expressed security concerns. To gain wider acceptance 
in the community, the HTCondor team solicited review by the Center for 
Trustworthy Software Cyberinfrastructure / Trusted CI [38] in August 
2016. The review was completed in August 2018 with only minimal 
flaws for the CHTC team to resolve. 

Another hallmark of software broadly used in the community is the 
provisioning of a multiple-channel support structure. HTCondor-CE 
support was provided initially through the existing OSG ticketing sys-
tems and, as the software moved beyond the OSG locale, the HTCondor 
mailing lists and ticketing systems. Beyond simple support, the OSG also 
performs outreach in terms of presentations and tutorials at a number of 
forums, including HEPiX 2015 [39], HTCondor Week Europe 
2016–2019 [40–43], OSG All Hands Meetings (starting in 2013), and 
Tutorials (e.g. at ISGC 2019 [44]). 

Structural changes were needed as the scope expanded further 
beyond the OSG. Several internal parameters (access credentials, ac-
counting methods, configuration, management software) made implicit 
assumptions about being run on the OSG CE. Support of non-OSG sites 
first became viable with the 2018 ‘grid-agnostic’ version of HTCondor- 
CE. Any implicit OSG assumption was moved to a separate package - 
non-OSG sites only needed the base package. This work was completed 
in 2019 when corresponding OSG-free documentation was released 
along with moving the code from the OSG GitHub organization to 
HTCSS. 

4. Impact and lessons learned 

The HTCondor-CE has become a major service of the OSG and a 
project within the HTCSS. It is the mechanism through which resources 
are delivered to communities and is relied upon daily. While not all CEs 
need to be publicly advertised, at the time of writing 174 endpoints 
(each representing typically a large cluster at a university or lab) are 
known; of these, about 90 % can be queried from the public Internet. 
Over the past two years, the number of deployed endpoints has grown by 
about 100. 

On a typical day, these queryable endpoints manage 875,000 pilots 
(this includes running RARs and those pending). The typical resource 
acquisition per RAR varies (making it difficult to estimate the total cores 
served) but the accounting systems at OSG and CERN each record over 
160,000 cores utilized by pilots on average; the total number of cores 
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shared through HTCondor-CE endpoints is likely over 400,000. Whether 
measured by cores or through the breadth of science enabled, the 
translation of the HTCondor-CE has made major impacts in this 
community. 

Achieving this impact allows us to reflect on some lessons learned. 
First and foremost, translational computing requires real time and 
resources. It is an activity that requires commitment, is a serious pur-
suit, and must be done as a primary goal of the team. Successful trans-
lation cannot be done as a “hobby.” In order to support the software 
infrastructure, the team must respond to support tickets, organize 
training events and fix user-discovered bugs. As the community becomes 
international, these issues are amplified as time zone differences result 
in very short windows of high-bandwidth troubleshooting. This can 
cause support efforts for a single issue to stretch out from hours to days. 
Outreach and collaboration efforts were similarly constrained, making it 
more difficult to gain a foothold in a “new market” with established 
solutions, and build community. Each requires significant, timely work 
on behalf of the team; therefore, it must be valued appropriately. On a 
positive note, we believe the effort spent on operating production 
infrastructure is extremely valuable to the team; it assists the translation 
process by providing a mechanism for feedback from a wide community. 

Translational Computing requires funding - but often takes longer 
than any individual research project. If we look at the “research 
heritage” of the HTCondor-CE, the HTCondor (previously, “Condor”) 
system itself started as a cycle scavenging project in the 1980’s [44] — 
over 30 years ago. Some of the most direct software contributions to the 
HTCondor-CE were the results from distinct research projects spanning a 
decade. The enabler is having a team interested in the translation and its 
outcomes — the PI-driven team is what allows the research products to 
be carried forward throughout the long-term translational work. Even 
then, this is not necessarily sufficient to do all the work — in the 
HTCondor-CE example, a core piece was the BLAHP which was a result 
of an external collaboration. We believe a focus on translation requires a 
cultural mindset from most CS research: while funding models may go in 
and out of vogue, the culture of the teams has a longer-term impact. 

As long as there is a community to engage, the translational 
work will be ongoing. Almost no community — or its needs — is 
completely static. To be successful, TCS requires ongoing research 
throughout the lifetime of the project. For example, the OSG is currently 
going through a major overhaul of its authorization scheme to switch 
from GSI to a token-based infrastructure [45]. Since the beginning of the 
HTCondor-CE in 2012 and the first release in 2013, there has been 
ongoing collaboration with CHTC and others, allowing new research 
ideas to flow into the product. Feedback loops with the community 
provide valuable insight into future work; for the HTCondor-CE, the 
community helped redesign the configuration language used by the 
JobRouter, identify the need for a network configuration debugging 
tool, and helped guide the addition of Kubernetes-based packaging. This 
partnership was active through the years, resulting in 54 HTCSS tickets 
about the CE (bugs and improvements), 68 BLAHP tickets, and 227 
HTCondor-CE tickets in the OSG. We look forward to sustaining this 
work for as long as there is a vibrant community around it. 

5. Conclusions 

The work by Livny and Melman reported in their 1982 paper [46] 
and recognized by the community [47] as the driver for research in 
adaptive load sharing policies was the starting point for the translational 
journey reported in this paper. The twists and turns, ups and downs, and 
disappointments and accomplishments of the journey took us from 
queuing theory and simulation models to a widely deployed Compute 
Entrypoint service are typical to the translational process. It takes a 
commitment that lasts years if not decades, spans organizations and 
continents, and sustains fluctuations in funding. We hope the experi-
ences reported here will help CS researchers and domain science com-
munities to engage in joint activities that translate advances in 

computing methodologies and technologies into better science. Our 
experience strongly supports our belief that such joint endeavors that 
are based on mutual trust and respect benefit the research of all parties; 
this trust helps mitigate the risk incurred by both sides due to engaging 
in a long-term translational process. Computer scientists benefit from 
demanding and committed users who evaluate new frameworks and 
technologies with real life applications in production environments and 
with research goals. 

We are fully aware of the obstacles that translational projects face. 
They range from the culture of the Computer Science community to the 
funding models of the agencies and from the lack of TCS methodologies 
and frameworks to the difficulties in building and sustaining a team of 
software professionals in academia that provides stability and continu-
ity. Most if not all of work of a translational project like the HTCondor- 
CE was done by staff members. Underpinning frameworks and tech-
nologies like the ClassAd language are the result of an earlier PhD work. 
One can view these obstacles as the missing infrastructure – intellectual 
and financial - that is needed to turn TCS into a mainstream academic 
practice. The value proposition of a TCS project is complex and multi- 
dimensional. It is likely to include both quantitative and qualitative 
metrics and arguments. We as computer scientists do poorly when it 
comes to qualitative argument. It is much easier to reason about ex-
pected latency or algorithm complexity than dependability or ease of 
use. This is especially true for translational projects – like the HTCondor- 
CE – that focus on mechanisms and not policies. We hope that the 
HTCondor-CE example for how translational work can be used to 
augment basic research with valuable experimental data, and the 
satisfaction of impact will mobilize the community to address these 
obstacles and to leverage the experience of similar translational projects. 
Training and building a TCS workforce and infrastructure will take a 
long-term commitment. Scientific discovery is waiting for us to take 
action. 
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