
Journal of Computational Science xxx (xxxx) xxx

Please cite this article as: Brian Bockelman, Journal of Computational Science, https://doi.org/10.1016/j.jocs.2020.101213

Available online 20 September 2020
1877-7503/© 2020 Elsevier B.V. All rights reserved.

Principles, technologies, and time: The translational journey of the
HTCondor-CE

Brian Bockelman a,*, Miron Livny a,b, Brian Lin b, Francesco Prelz c

a Morgridge Institute for Research, Madison, USA
b Department of Computer Sciences, University of Wisconsin-Madison, Madison, USA
c INFN Milan, Milan, Italy

A R T I C L E I N F O

Keywords:
Distributed high throughput computing
High throughput computing
Translational computing
Distributed computing

A B S T R A C T

Mechanisms for remote execution of computational tasks enable a distributed system to effectively utilize all
available resources. This ability is essential to attaining the objectives of high availability, system reliability, and
graceful degradation and directly contribute to flexibility, adaptability, and incremental growth. As part of a
national fabric of Distributed High Throughput Computing (dHTC) services, remote execution is a cornerstone of
the Open Science Grid (OSG) Compute Federation. Most of the organizations that harness the computing capacity
provided by the OSG also deploy HTCondor pools on resources acquired from the OSG. The HTCondor Compute
Entrypoint (CE) facilitates the remote acquisition of resources by all organizations. The HTCondor-CE is the
product of a most recent translational cycle that is part of a multidecade translational process. The process is
rooted in a partnership, between members of the High Energy Physics community and computer scientists, that
evolved over three decades and involved testing and evaluation with active users and production infrastructures.
Through several translational cycles that involved researchers from different organizations and continents,
principles, ideas, frameworks and technologies were translated into a widely adopted software artifact that
isresponsible for provisioning of approximately 9 million core hours per day across 170 endpoints.

1. Introduction

In 2014, the Open Science Grid (OSG) consortium announced to the
sites in its Compute Federation that it would base its computing resource
management technologies on the HTCondor Compute Entrypoint (CE)
[1]. The HTCondor-CE enables remote submissions of acquisition re-
quests to a compute resource. Developed and maintained on top of
technologies from the UW-Madison Center for High Throughput
Computing (CHTC), this edge service replaced the Globus Gatekeeper
adopted by the OSG upon its inception in 2005. The announcement was
a major milestone in a project that began two years earlier within the
OSG with roots that extended into more than a decade of collaboration
with multi-disciplinary projects in Europe, two decades of collaboration
between Computer Science and High Energy Physics (HEP), and more
than three decades of distributed computing research and experiences.
Over time we witnessed processes of translational [2] nature that played
a key role in reaching this milestone. Today, more than 170 endpoints at
more than 65 sites worldwide use the HTCondor-CE to facilitate sharing
of computing resources via remote acquisition.

Like other elements of the evolving HTCondor Software Suite
(HTCSS) [3], the HTCondor-CE project has a starting date but has no end
date in sight. In the context of our work, successful translational projects
start by the articulation of the need for a capability by a committed
customer and continue as long as the software artifact is deployed. The
commitment that triggered the current translational cycle came with a
2012 assignment by the OSG Executive Team to its “Technology In-
vestigations” activity: under the leadership of Bockelman and in
collaboration with CHTC, develop a new strategy for the OSG Compute
Entrypoint. The very nature of a software artifact that provides a critical
capability in a cyberinfrastructure ecosystem requires a commitment to
long term evolution founded on mutual trust and sustainability. The
long partnership between OSG and CHTC has been facilitating such a
commitment.

The HTCondor-CE embodies principles, ideas and technologies that
have been pioneered and developed initially by the Condor Project that
started in 1984 [4] and more recently by the CHTC. As a HTCSS element,
the HTCondor-CE leverages software components and partnerships that
were developed over three decades by the group led by Livny. The

* Corresponding author at: Morgridge Institute for Research, 330 N Orchard Street, Madison, WI 53715, USA.
E-mail address: bbockelman@morgridge.org (B. Bockelman).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2020.101213
Received 31 May 2020; Received in revised form 26 July 2020; Accepted 25 August 2020

mailto:bbockelman@morgridge.org
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2020.101213
https://doi.org/10.1016/j.jocs.2020.101213
https://doi.org/10.1016/j.jocs.2020.101213

Journal of Computational Science xxx (xxxx) xxx

2

hallmark of these partnerships has been the translation of advances in
distributed computing into scientific discovery through an open High
Throughput Computing (HTC) software ecosystem.

In our experience, the roots of translational projects are typically
diverse and run deep. While recent changes in the technology landscape
have impacted the evolution of the HTCondor-CE, the abstractions
presented and the architecture of the software have been established for
decades. The HTCondor-CE includes elements of the HTCSS that were
first introduced two decades ago, such as the ClassAds language to
describe acquisition requests, and resources, and matchmaking [5] to
route requests to resources. As in the case of Translational Medicine, the
software delivered by a translational computing project has to be of
value and of low risk to the target community. Namely, the software
must be dependable, reliable and secure. Achieving and sustaining these
goals requires creative software reuse, adaptation of new technologies
and disciplined software engineering.

The community served by the OSG is international with a significant
involvement of the Large Hadron Collider (LHC) experiments at CERN
[6]. This entails a close relationship with the Worldwide LHC
Computing Grid (WLCG) [7]. In 2005, the OSG deployed the gatekeeper
software widely adopted by the WLCG. The WLCG would later decide to
replace its gatekeeper. The search for an alternate technology that was
conducted by the European gLite project [8] offered the Condor Project
an opportunity to develop a prototype that would underpin many of the
later HTCondor-CE technologies. In 2007 the gLite project eventually
selected a different technology for its gatekeeper (CREAM [9]), bringing
the previous translation cycle to a halt. At the time the OSG decided not
to follow the WLCG.

The HTCondor-CE project builds on a close and productive part-
nership between the CHTC and the HEP community. It started in 1990
with researchers from Nikhef in the Netherlands [10] and continued in
1995 with researchers from INFN in Italy [11]. A key element of the
HTCondor-CE has been developed and maintained by the INFN and the
concept of “flocking” across HTCondor pools was developed through the
Nikhef collaboration. In the early 2000s, these partnerships expanded to
additional organizations and projects and were formalized through
three US projects (PPDG, GriPhyN and iVDGL) that led to Grid3 [12] and
the OSG and through two European projects led by CERN (European
DataGrid and EGEE). This groundwork helped develop capabilities that
serves the entire spectrum of open science domains today. A number of
WLCG sites in Europe (including CERN) and Asia have adopted the
HTCondor-CE.

The paper provides an overview of the motivation, functionality and
architecture of the HTCondor-CE and presents the history and elements
of the translational project that took a problem statement articulated by
a customer and delivered a widely deployed software tool. The project is
now eight years old with a history that goes back almost four decades.

2. Background and context

The application of the translational principles embodied in the
HTCondor-CE project started with the realization, in the late 1990s, that
the scale and complexity of the data-taking for the LHC exceeded the
capabilities of CERN in-house compute resources, of physicist-driven
software development that had carried the HEP field on for decades,
and of available commercial solutions [13–16]. Rather than scale back
the physics goals, the LHC reached out to Computer Science groups,
finding the nascent idea of wide area distributed computing promoted in
the context of “grid computing” [17], a neat fit to allow the LHC ex-
periments to implement a multi-tier infrastructure that leveraged re-
sources at sites around the world in addition to the resources at CERN.
Each of these labs and universities provided their computational re-
sources through a batch system, such as HTCondor, LSF, or PBS, that
users would access and submit computational jobs through a local login
host via SSH. When faced with the need to share these resources with a
globally-distributed user community, the initial approach – based on the

model developed by the Globus project [18] – was to provide a mech-
anism to submit these jobs remotely. The software that enabled remote
job submission was termed the gatekeeper [18]. A compute cluster
accessible via such a remote job submission gateway was considered a
WLCG Compute Element or, in short, a CE.

The paradigm of remote job submission was not particularly suc-
cessful: it was frustrating to end-users when a compute element would
lose jobs or when jobs were sent to a site where they got “stuck” in a
remote queue waiting to be selected by the local scheduler. This
approach of “early binding” hinged on reliably predicting the behavior
of job queues, which proved unreliable. Error propagation across the
software layers was difficult. These pitfalls of a job-centric computing
model are covered by Sfiligoi [19].

2.1. The OSG compute federation

The OSG gatekeeper services consequently shifted from managing
jobs to acting as a resource acquisition service. The “CE”, in its new
function as “Compute Entrypoint,” securely manages various local re-
sources: clusters where access is granted by a batch system, VMs
managed by “cloud” services, or other CEs.

In the OSG ecosystem, the remote clients of CEs are no longer end-
users but rather “factories” that represent organizations responsible
for managing the jobs submitted by end-users; rather than end-user jobs,
the factory service sends to the CE Resource Acquisition Requests
(RARs), commonly referred to as “pilots.” Once a resource is allocated by
the Local Resource Management System (LRMS), a pilot process is
launched and joins a pool of resources managed by the organization that
operates the factory. The CE can be viewed as a service that routes RARs
between the factory and the service managing the local hardware.

A resource management overlay is established by the organizations
that manages the single logical pool of acquired resources, assigning
them end-user jobs (“payloads”), with tight control over reporting and
error propagation. Further, since payloads are not committed to a
resource until it is available (late binding) and executed by the deployed
pilot, users are not exposed to the scheduling vagaries and the APIs of
dozens of autonomously managed LRMS’s.

GlideinWMS is used to provide factory services to most OSG orga-
nizations [20]; in GlideinWMS, the HTCondor scheduler - using
“HTCondor-G” – submits and manages RARs at remote CEs [21]. The
scheduler is also used to manage the deployed pool of resources. Upon
start-up, the pilot downloads, configures, and launches an HTCondor
execute node which securely joins the HTCondor pool managed by the
organization. At sites where HTCondor is also the LRMS, OSG leverages
the fact that there is a consistent software suite from factory to CE to
LRMS to resource pool, minimizing information loss due to ‘translation’
between the layer as each layer communicates using the ClassAd
language.

2.2. Functionality needed by a CE

To demonstrate the paths between desired functionality and basic
research we highlight four core CE functions required by the OSG along
with the corresponding basic technology research:

1 Manage Resource Acquisition Requests: The CE has to track RARs
throughout their lifecycle while communicating pilot, status, ac-
counting information, error information, and log files back to the
factory.

Research: For HTCondor-G, the HTCSS scheduler (the “SchedD”) is
used to manage the RARs (each request is represented by a job in the
SchedD) even though RARs are fulfilled by an external system. This al-
lows the same interface to be used regardless of whether the entity
represents a job executed by HTCSS itself or another LRMS. Work on the
architecture of HTCondor-G dates back to 2001 [21]. This is enabled by

B. Bockelman et al.

Journal of Computational Science xxx (xxxx) xxx

3

the semi-structured properties of the ClassAd language that is used to
represent all entities throughout the HTCSS.

2 Interacting with the LRMS. HTCondor-G was originally designed to
execute a job in a remote batch system using the Globus Gatekeeper.
However, the design evolved to be highly modular so new modules
could be written for other services providing a job-like interface. For
example, since the lifecycle of a virtual machine in a cloud system
goes through states that can be mapped to batch job states (idle/
pending, running, removing), the HTCSS scheduler can manage
virtual machines in multiple commercial cloud providers.

Research: Primarily, the resources provided by OSG sites are
managed by a variety of batch systems. Matching interfaces have to be
implemented, tested and maintained. The BLAHP [22], software origi-
nally developed as part of both the gLite CE [23] prototype and CREAM
services (see Section 3) is an example of architecture and protocol for
this purpose.

3 Translate from remote RAR to local RAR: The factory should not
have detailed knowledge about the local resources. Rather, it is
important that RARs express generic requirements and are only
augmented with local information once at the site. This facilitates the
autonomy of the local site administrator.

Research: The HTCSS developed the concept of a JobRouter in 2009.
It is based on a service that passively monitors the queued jobs and can
take an incoming job, place it on hold, follow a specified set of trans-
formation rules encoded in the ClassAd language to create a local job,
and submit the derived job back into a SchedD for local execution [24].

4 Externally authenticate and authorize actions: The CE ensures
the resource provider the incoming RARs are appropriately autho-
rized. This is most commonly done by authenticating the remote
entity to a global identity, mapping this to a local identity, and then
applying a set of authorization policies based on that local identity.

Research: The CEDAR communication framework [3] developed by
HTCSS is based on protocols which negotiate an authentication mech-
anism with a remote entity, establish an identity, and apply a set of rules
to determine whether the identity is authorized for an action. As the
authentication protocol itself is negotiated, CEDAR has the ability to
evolve; while GSI [25] is currently the most popular protocol within the
OSG, CEDAR can utilize different and evolving technologies such as the

capability-based SciTokens [26].

2.3. The HTCondor-CE architecture

Four elements of the HTCSS compose the HTCondor-CE as illustrated
in the flow of a RAR from the factory HTCondor-G to a HTCondor-CE to
the LRMS in Fig. 1. The elements were enhanced in the course of this
translational cycle to meet specific needs of a CE service and are now
standard features of the software suite. The HTCondor-CE meets the
requirements set forth within Section 2.2 solely through a special
configuration of these elements. The HTCondor-CE consists of the
following elements:

• SchedD: The SchedD authenticates the remote client and accepts the
incoming RAR R. These requests are managed as job entities in the
internal SchedD database.

• JobRouter: The JobRouter takes the generic RAR (R) directly from
the SchedD database that is logged to disk and customizes it to make
an equivalent local RAR (B) and submits it back to the SchedD. The
JobRouter is responsible for ensuring updates to R and B follow a
two-way mirroring protocol. For example, the JobRouter will update
R’s state to running when B is marked as running; if the remote client
removes R, the JobRouter will remove B.

• BLAHP: The RAR B is represented as a job in the HTCondor’s “grid
universe”. In the SchedD, this indicates the job is to be managed by
an external entity — in this case, the BLAHP. The BLAHP is given the
description of B and is responsible to convert this description into a
job J for the LRMS; the SchedD will also invoke the BLAHP to
perform status updates and job removals. Currently supported
LRMSs are Grid Engine, HTCondor, LSF, PBS Pro/Torque, and Slurm.

• Collector: In the case of GlideinWMS pilots, the collector aggregates
information from the running pilots and forwards it to the OSG in-
formation service (also a HTCSS collector). This includes CE contact
details (allowing for service discovery), a summary of the CE
configuration and RAR monitoring in the HTCondor-CE.

3. Translation process

As noted, much of the translational activity was driven by collabo-
ration between CS and HEP. To borrow from a different definition of the
word translation, the collaboration between the two disciplines required
projects to “translate one’s own disciplinary jargon into a language that
can be understood by others.” [27] It also required that the outcomes
and artifacts produced by the CS research possess rich enough semantic

Fig. 1. The architectural components of the HTCondor-CE. Here, R represents the incoming RAR from the remote client. This is transformed according to policy into
a local “blah” job, B. The SchedD also tracks B’s lifecycle in its internal database and uses the blah to interact with the LRMS. The blah will take B, converted to an
appropriate batch job J, and submit it to the LRMS.

B. Bockelman et al.

Journal of Computational Science xxx (xxxx) xxx

4

properties to allow restructuring or re-combining for use in new and
shifting contexts. This led to the identification of gaps in abstractions
then to the development of bridges and connections between the
collaborating parties.

Throughout the early 2000’s, the HTCondor project developed the
frameworks and technologies that would eventually underpin the
HTCondor-CE. While the individual components were developed to
advance distinct research goals, all were driven by a vision of enabling
Distributed High Throughput Computing on a global scale. The move
from the lab (the CHTC at the UW–Madison campus) to the locale (initial
deployments on OSG) to the community (widespread production de-
ployments) would span 12 years. This includes an initial failed trans-
lation cycle, international collaboration, and the initial adoption by
leaders in the community. The timeline – from initial research through
community adoption is summarized in Fig. 2.

3.1. From lab to the locale

A first attempt at developing a CE based on the distributed
computing principles underpinning HTCondor’s basic research was the
‘gLite CE’ [28] prototype. It was an early attempt to translate the ab-
stractions and technologies of the HTCSS into a functioning CE that
could be deployed by an organization. In the gLite CE architecture, the
site gatekeeper service (the Globus Gatekeeper software) would launch
on behalf of an organization an unprivileged version of the HTCSS
SchedD. In this way, each LHC experiment in the WLCG could utilize a
bespoke CE, customized for their needs, policies, and potentially pro-
tocols. The SchedD process, specific to the remote organization, would
then forward the jobs to the LRMS using the newly developed BLAHP.
This approach offered more autonomy to the organization in how they
used the remote resources. These spheres of autonomy are critical to the
effectiveness of a distributed system – but come at a cost of complexity.
Contrasting with Fig. 1, there would be multiple SchedD’s on the LRMS
head node, the early prototype did not include a JobRouter to customize
jobs (it was assumed the external submitter would customize based on

the available global information in discovery services [29]), and the CE
service was still job-oriented rather than RAR-oriented. Had the WLCG
followed this approach, organizations could have deployed
RAR-oriented CEs as they adopted the pilot concept.

The prototype development effort stemmed from the gLite project’s
desire to replace the Globus gatekeeper as the service provider and sole
port of entry for the remote resource. During this development effort,
the gLite project investigated two distinct technologies: the gLite CE and
the CREAM CE [30] developed by INFN. After an internal evaluation of
both technologies, in 2007, gLite decided to adopt the CREAM CE. While
we were not privy to the decision-making process, we believe this
highlights the fact the customer makes the decision – and can include
considerations beyond simple technical items. This fact that adoption is
a complex, sometimes non-technical, process is a major obstacle in
translational work.

At the time, OSG decided to stay with Globus Gatekeeper and adopt
neither of the other CEs – the need to transition from Globus was not
seen as urgent and there was no desire to undertake a software engi-
neering project at the time. Given neither the OSG nor gLite decided to
adopt the gLite CE approach, this translation was essentially a failure.
Despite the failure to reach the target community, a positive outcome of
this era was further development of the software (HTCSS, BLAHP) that
would eventually underpin the HTCondor-CE. For example, the BLAHP
was integrated as part of HTCSS releases and HTCondor gained signifi-
cant capabilities to accept jobs through remote submission. HTCSS was
enhanced with the HTCondor-C capability that supports remote sub-
mission between two SchedDs

In parallel to the gLite CE prototype work, the HTCondor project
developed the concept of a "SchedD on the side", which acts like a
"shadow" of a SchedD, creating a new job that is derived from and linked
to the original job in the SchedD after a specified transformation. This
approach leverages the HTCSS view of a job as a chain of job instances
anchored by the original job submitted by the end-user and dynamically
expanding and shrinking through delegation to other services. The
concept also leverages the log-based technology used by the SchedD to

Fig. 2. A timeline of major events in the lifetime of the HTCondor-CE, from initial work on HTCSS, to components preceding the HTCondor-CE, to details from the
CE’s translation.

B. Bockelman et al.

Journal of Computational Science xxx (xxxx) xxx

5

manage a disk image of the in-memory set of job ClassAds. Trailing the
transaction log enables the JobRouter to shadow the current SchedD
state and keep an up to date, in-memory image of the collection of jobs
managed by the shadowed SchedD service.

During this period, the gLite project would continue to integrate the
CREAM CE and OSG would base its CE product on software from Globus.
For their gatekeeper, Globus would adopt a Java-based SOAP web
service-based approach for GRAM4 [31] before ultimately abandoning
this approach for an evolution of its original software stack in GRAM5
[32].

The next attempt to translate HTCSS as a CE for the Distributed High
Throughput Community began in 2012, when the OSG decided to
investigate alternatives to the Globus Gatekeeper; this new investigation
was triggered by uncertainty in the future support for the Globus
Gatekeeper component and the opportunities afforded by the earlier
transition to the resource acquisition model. Over the next 6 months, the
OSG internally evaluated two options: the HTCondor-CE, based upon
HTCSS and developed by Bockelman, or the CREAM CE. Given HTCSS
was already a central component of many existing pieces in the OSG
technology stack — including the GlideinWMS resource management
overlay — the HTCondor-CE (as described in Section 2.3) was built from
familiar technologies and did not add dependencies on new external
software providers.

While the HTCondor-CE has several overlapping ideas with the gLite
CE, it was a completely new project, initially sharing no developers or
code. Compared to the prior gLite CE, the HTCondor-CE prototype was
simpler — as the HTCondor SchedD was running as a privileged
executable, this process could serve all clients of the CE, regardless of the
mapped Unix user of the client. The HTCondor-CE would also perform
the authentication and authorization of the remote entity through
invoking the Globus GSI libraries as opposed to relying on a separate
gatekeeper process to authenticate clients prior to HTCondor starting.
Finally, by using Globus GSI for authentication and LCMAPS [33] for
authorization callouts, the CE would rely on the same infrastructure as
the rest of the community, helping to gain acceptance. The
HTCondor-CE is seen as a highly customized configuration of HTCSS as
opposed to a major software engineering project by itself.

The initial release of HTCondor-CE was done in May of 2012 and
showed functionality for two LRMS’s (HTCondor and PBS) — while
functional, it was still in the ‘laboratory’. This initial release was hard-
ened in the OSG Integration Test Bed (ITB), which allowed for internal
testing and integration of HTCondor-CE with the rest of the OSG Soft-
ware Stack. After completion of testing in this “laboratory”, HTCondor-
CE was released to the OSG in its November 2013 production release.
The first production deployment was in 2013 at Nebraska; another early
adopter was Brookhaven National Laboratory (BNL) in 2014. After these
initial successes, the OSG decided to officially transition to using the
HTCondor-CE as the base for its OSG CE product; at the time, both
HTCondor-CE and GRAM were supported as “backends”.

The two largest resource providers in the OSG Compute Federation
are the U.S. ATLAS and U.S. CMS operations programs; their adoption of
the new software was both a critical test of its functionality and a vote of
confidence in the technology. The U.S. CMS operations program started
their transition to the HTCondor-CE in April 2014 while the engagement
with U.S. ATLAS began in June 2014. The work with ATLAS benefited
from a contributor who was both a member of the OSG release team and
managed the U.S. ATLAS CEs at BNL (deploying the HTCondor-CE in
August 2014). Other sites helped expand the functionality as additional
LRMS’s were integrated; for example, SLAC helped contribute and test
the LSF support and corresponding documentation starting June 2014;
SLAC eventually moved their endpoint to production in March 2015.
Similarly, native Slurm [34] support would occur over the next year. In
August 2015, the OSG announced that it would drop support for Globus
GRAM completely in the following year, beginning HTCondor-CE’s
transition from the locale to the community [35].

3.2. From locale to the community

We consider the OSG decision in 2015 to base its computing software
on HTCondor-CE as the first indicator that the software begun its tran-
sition to the community — the software was increasingly critical to
CHTC stakeholders and provided core functionality to the OSG. A second
important milestone for the HTCondor-CE was its adoption by CERN. In
2015, CERN was in the process of adopting HTCondor as a LRMS and
evaluating new CE technologies. Eventually, CERN decided to also use
HTCondor-CE — largely based on the strength of the integration with
other components of HTCSS and that it would only depend on a single
software provider (CHTC) for both the LRMS and the CE. While HTCSS
has been used in the WLCG beyond the OSG, the CERN endpoints were
the first non-OSG deployment of the HTCondor-CE.

Once proven in the locale, the core architectural components of the
HTCondor-CE have remained relatively fixed. As usage of the CE spread,
additional integrations needed to be performed in order for the software
to work in new communities. For example, while the native information
service mechanism is the HTCSS collector (as shown in Fig. 1), in Europe
the BDII is used for service discovery [29] and support had to be
contributed to the HTCondor-CE software. Other differences at Euro-
pean sites included integration of the new CE with the local accounting
software (APEL [36]) and authorization service (Argus [37]).

While the HTCondor-CE derives from the widely used HTCSS and
uses the same authentication and authorization libraries, it is still a
complex service exposed to the internet; several sites involved in this
transition process expressed security concerns. To gain wider acceptance
in the community, the HTCondor team solicited review by the Center for
Trustworthy Software Cyberinfrastructure / Trusted CI [38] in August
2016. The review was completed in August 2018 with only minimal
flaws for the CHTC team to resolve.

Another hallmark of software broadly used in the community is the
provisioning of a multiple-channel support structure. HTCondor-CE
support was provided initially through the existing OSG ticketing sys-
tems and, as the software moved beyond the OSG locale, the HTCondor
mailing lists and ticketing systems. Beyond simple support, the OSG also
performs outreach in terms of presentations and tutorials at a number of
forums, including HEPiX 2015 [39], HTCondor Week Europe
2016–2019 [40–43], OSG All Hands Meetings (starting in 2013), and
Tutorials (e.g. at ISGC 2019 [44]).

Structural changes were needed as the scope expanded further
beyond the OSG. Several internal parameters (access credentials, ac-
counting methods, configuration, management software) made implicit
assumptions about being run on the OSG CE. Support of non-OSG sites
first became viable with the 2018 ‘grid-agnostic’ version of HTCondor-
CE. Any implicit OSG assumption was moved to a separate package -
non-OSG sites only needed the base package. This work was completed
in 2019 when corresponding OSG-free documentation was released
along with moving the code from the OSG GitHub organization to
HTCSS.

4. Impact and lessons learned

The HTCondor-CE has become a major service of the OSG and a
project within the HTCSS. It is the mechanism through which resources
are delivered to communities and is relied upon daily. While not all CEs
need to be publicly advertised, at the time of writing 174 endpoints
(each representing typically a large cluster at a university or lab) are
known; of these, about 90 % can be queried from the public Internet.
Over the past two years, the number of deployed endpoints has grown by
about 100.

On a typical day, these queryable endpoints manage 875,000 pilots
(this includes running RARs and those pending). The typical resource
acquisition per RAR varies (making it difficult to estimate the total cores
served) but the accounting systems at OSG and CERN each record over
160,000 cores utilized by pilots on average; the total number of cores

B. Bockelman et al.

Journal of Computational Science xxx (xxxx) xxx

6

shared through HTCondor-CE endpoints is likely over 400,000. Whether
measured by cores or through the breadth of science enabled, the
translation of the HTCondor-CE has made major impacts in this
community.

Achieving this impact allows us to reflect on some lessons learned.
First and foremost, translational computing requires real time and
resources. It is an activity that requires commitment, is a serious pur-
suit, and must be done as a primary goal of the team. Successful trans-
lation cannot be done as a “hobby.” In order to support the software
infrastructure, the team must respond to support tickets, organize
training events and fix user-discovered bugs. As the community becomes
international, these issues are amplified as time zone differences result
in very short windows of high-bandwidth troubleshooting. This can
cause support efforts for a single issue to stretch out from hours to days.
Outreach and collaboration efforts were similarly constrained, making it
more difficult to gain a foothold in a “new market” with established
solutions, and build community. Each requires significant, timely work
on behalf of the team; therefore, it must be valued appropriately. On a
positive note, we believe the effort spent on operating production
infrastructure is extremely valuable to the team; it assists the translation
process by providing a mechanism for feedback from a wide community.

Translational Computing requires funding - but often takes longer
than any individual research project. If we look at the “research
heritage” of the HTCondor-CE, the HTCondor (previously, “Condor”)
system itself started as a cycle scavenging project in the 1980’s [44] —
over 30 years ago. Some of the most direct software contributions to the
HTCondor-CE were the results from distinct research projects spanning a
decade. The enabler is having a team interested in the translation and its
outcomes — the PI-driven team is what allows the research products to
be carried forward throughout the long-term translational work. Even
then, this is not necessarily sufficient to do all the work — in the
HTCondor-CE example, a core piece was the BLAHP which was a result
of an external collaboration. We believe a focus on translation requires a
cultural mindset from most CS research: while funding models may go in
and out of vogue, the culture of the teams has a longer-term impact.

As long as there is a community to engage, the translational
work will be ongoing. Almost no community — or its needs — is
completely static. To be successful, TCS requires ongoing research
throughout the lifetime of the project. For example, the OSG is currently
going through a major overhaul of its authorization scheme to switch
from GSI to a token-based infrastructure [45]. Since the beginning of the
HTCondor-CE in 2012 and the first release in 2013, there has been
ongoing collaboration with CHTC and others, allowing new research
ideas to flow into the product. Feedback loops with the community
provide valuable insight into future work; for the HTCondor-CE, the
community helped redesign the configuration language used by the
JobRouter, identify the need for a network configuration debugging
tool, and helped guide the addition of Kubernetes-based packaging. This
partnership was active through the years, resulting in 54 HTCSS tickets
about the CE (bugs and improvements), 68 BLAHP tickets, and 227
HTCondor-CE tickets in the OSG. We look forward to sustaining this
work for as long as there is a vibrant community around it.

5. Conclusions

The work by Livny and Melman reported in their 1982 paper [46]
and recognized by the community [47] as the driver for research in
adaptive load sharing policies was the starting point for the translational
journey reported in this paper. The twists and turns, ups and downs, and
disappointments and accomplishments of the journey took us from
queuing theory and simulation models to a widely deployed Compute
Entrypoint service are typical to the translational process. It takes a
commitment that lasts years if not decades, spans organizations and
continents, and sustains fluctuations in funding. We hope the experi-
ences reported here will help CS researchers and domain science com-
munities to engage in joint activities that translate advances in

computing methodologies and technologies into better science. Our
experience strongly supports our belief that such joint endeavors that
are based on mutual trust and respect benefit the research of all parties;
this trust helps mitigate the risk incurred by both sides due to engaging
in a long-term translational process. Computer scientists benefit from
demanding and committed users who evaluate new frameworks and
technologies with real life applications in production environments and
with research goals.

We are fully aware of the obstacles that translational projects face.
They range from the culture of the Computer Science community to the
funding models of the agencies and from the lack of TCS methodologies
and frameworks to the difficulties in building and sustaining a team of
software professionals in academia that provides stability and continu-
ity. Most if not all of work of a translational project like the HTCondor-
CE was done by staff members. Underpinning frameworks and tech-
nologies like the ClassAd language are the result of an earlier PhD work.
One can view these obstacles as the missing infrastructure – intellectual
and financial - that is needed to turn TCS into a mainstream academic
practice. The value proposition of a TCS project is complex and multi-
dimensional. It is likely to include both quantitative and qualitative
metrics and arguments. We as computer scientists do poorly when it
comes to qualitative argument. It is much easier to reason about ex-
pected latency or algorithm complexity than dependability or ease of
use. This is especially true for translational projects – like the HTCondor-
CE – that focus on mechanisms and not policies. We hope that the
HTCondor-CE example for how translational work can be used to
augment basic research with valuable experimental data, and the
satisfaction of impact will mobilize the community to address these
obstacles and to leverage the experience of similar translational projects.
Training and building a TCS workforce and infrastructure will take a
long-term commitment. Scientific discovery is waiting for us to take
action.

Declaration of Competing Interest

This material is based upon work supported by the National Science
Foundation under Grant No. 1321762 and 1148698. Beyond this sup-
port, the authors of this manuscript have no further conflicts of interest
to report.

Acknowledgement

This material is based upon work supported by the National Science
Foundation under Grant No. 1321762 and 1148698.

References

[1] B. Lin, B. Bockelman, et al., HTCondor-CE v4.3.0-2, May, 2020, https://doi.org/
10.5281/zenodo.3862643, https://github.com/htcondor/htcondor-ce.

[2] D. Abramson, M. Parashar, Translational research in computer science, Computer
52 (September (9)) (2019) 16–23, https://doi.org/10.1109/MC.2019.2925650.

[3] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: the condor
experience, Concurr. Comput. Pract. Exp. 17 (February-April (2-4)) (2005)
323–356, https://doi.org/10.1002/cpe.938.

[4] M.J. Litzkow, M. Livny, M.W. Mutka, Condor-a hunter of idle workstations, 1988]
Proceedings. The 8th International Conference on Distributed (1988) 104–111,
https://doi.org/10.1109/DCS.1988.12507.

[5] R. Raman, M. Livny, M. Solomon, Matchmaking: distributed resource management
for high throughput computing, Proceedings. The Seventh International
Symposium on High Performance Distributed Computing (Cat. No.98TB100244)
(1998) 140–146, https://doi.org/10.1109/HPDC.1998.709966.

[6] L. Evans, P. Bryant, LHC machine, JINST 3 (2008), S08001, https://doi.org/
10.1088/1748-0221/3/08/S08001.

[7] The WLCG Collaboration, https://wlcg-public.web.cern.ch/.
[8] J. White, gLite and condor present and future, Presentation at HTCondor Week

(2006). https://research.cs.wisc.edu/htcondor/CondorWeek2006/presentati
ons/white_egee.pdf.

[9] M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,
J. Nielsen, M. Niinimäki, O. Smirnova, A. Wäänänen, Advanced resource connector
middleware for lightweight computational grids, Future Gener. Comput. Syst. 23
(2) (2007) 219–240, https://doi.org/10.1016/j.future.2006.05.008. http://www.
sciencedirect.com/science/article/pii/S0167739X06001178.

B. Bockelman et al.

https://doi.org/10.5281/zenodo.3862643
https://doi.org/10.5281/zenodo.3862643
https://github.com/htcondor/htcondor-ce
https://doi.org/10.1109/MC.2019.2925650
https://doi.org/10.1002/cpe.938
https://doi.org/10.1109/DCS.1988.12507
https://doi.org/10.1109/HPDC.1998.709966
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://wlcg-public.web.cern.ch/
https://research.cs.wisc.edu/htcondor/CondorWeek2006/presentations/white_egee.pdf
https://research.cs.wisc.edu/htcondor/CondorWeek2006/presentations/white_egee.pdf
https://doi.org/10.1016/j.future.2006.05.008
http://www.sciencedirect.com/science/article/pii/S0167739X06001178
http://www.sciencedirect.com/science/article/pii/S0167739X06001178

Journal of Computational Science xxx (xxxx) xxx

7

[10] D.H.J. Epema, M. Livny, R. van Dantzig, X. Evers, J. Pruyne, A worldwide flock of
Condors: load sharing among workstation clusters, Future Gener. Comput. Syst. 12
(1996) 53–65, https://doi.org/10.1016/s0167-8191(98)00079-9.

[11] J. Basney, M. Livny, Paolo Mazzanti, Utilizing widely distributed computational
resources efficiently with execution domains, Comput. Phys. Commun. 140
(October (1-2)) (2001) 246.

[12] R. Gardner, grid3 : an application grid laboratory for science, Proceedings
Computing in High Energy Physics and Nuclear Physics (2004) 18, https://doi.org/
10.5170/CERN-2005-002.18.

[13] The LHC experiments Committee, Technical Proposal for CMS Computing, Tech.
Rep. CERN-LHCC-96-045, CERN, Geneva, 1996, https://cds.cern.ch/reco
rd/322321.

[14] M. Aderholz, K. Amako, E. Augé, G. Bagliesi, L. Barone, G. Battistoni, M. Bernardi,
M. Boschini, A. Brunengo, J.J. Bunn, J. Butler, M. Campanella, P. Capiluppi,
F. Carminati, M. D’Amato, M. Dameri, A. Di Mattia, A.E. Dorokhov, G. Erbacci,
U. Gasparini, F. Gagliardi, I. Gaines, P. Gálvez, A. Ghiselli, J. Gordon, C. Grandi,
F. Harris, K. Holtman, V. Karimäki, Y. Karita, J.T. Klem, I. Legrand, M. Leltchouk,
D. Linglin, P. Lubrano, L. Luminari, A.L. Maslennikov, A. Mattasoglio,
M. Michelotto, I.C. McArthur, Y. Morita, A. Nazarenko, H. Newman, V. O’Dell, S.
W. O’Neale, B. Osculati, M. Pepé, L. Perini, J.L. Pinfold, R. Pordes, F. Prelz,
A. Putzer, S. Resconi, L. Robertson, S. Rolli, T. Sasaki, H. Sato, L. Servoli, R.
D. Schaffer, T.L. Schalk, M. Sgaravatto, J. Shiers, L. Silvestris, G.P. Siroli, K. Sliwa,
T. Smith, R. Somigliana, C. Stanescu, H.E. Stockinger, D. Ugolotti, E. Valente,
C. Vistoli, I.M. Willers, R.P. Wilkinson, D.O. Williams, Models of Networked
Analysis at Regional Centres for LHC Experiments (MONARC), Phase 2 Report,
24th March 2000, Tech. Rep. CERN-LCB-2000-001. KEK-2000-8, CERN, Geneva,
2000, https://cds.cern.ch/record/510694.

[15] K. Bos, N. Brook, D. Duellmann, C. Eck, I. Fisk, D. Foster, B. Gibbard, C. Grandi,
F. Grey, J. Harvey, A. Heiss, F. Hemmer, S. Jarp, R. Jones, D. Kelsey, J. Knobloch,
M. Lamanna, H. Marten, P. Mato Vila, F. Ould-Saada, B. Panzer-Steindel, L. Perini,
L. Robertson, Y. Schutz, U. Schwickerath, J. Shiers, T. Wenaus, LHC Computing
Grid: Technical Design Report, Version 1.06 (20 Jun 2005), Technical Design
Report LCG, CERN, Geneva, 2005, http://cds.cern.ch/record/840543.

[16] G. Bayatyan, M.D. Negra, A. Foà, Hervé, A. Petrilli, CMS computing: Technical
Design Report, submitted on 31 May 2005, CERN, Geneva, 2005, https://cds.cern.
ch/record/838359.

[17] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann Publishers, 1999. ISBN 978-1-55860-475-9.

[18] I. Foster, C. Kesselman, The Globus project: a status report, Proceedings Seventh
Heterogeneous Computing Workshop (HCW’98) (1998) 4–18, https://doi.org/
10.1109/HCW.1998.666541.

[19] I. Sfiligoi, glideinWMS—a generic pilot-based workload management system,
J. Phys. Conf. Ser. 119 (6) (2008), 062044,, https://doi.org/10.1088/1742-6596/
119/6/062044.

[20] I. Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wuerthwein, The
pilot way to grid resources using glideinWMS, in: 2009 WRI World Congress on
Computer Science and Information Engineering, 2, 2009, pp. 428–432, https://doi.
org/10.1109/CSIE.2009.950.

[21] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-G: a computation
management agent for multi-institutional grids, Proceedings 10th IEEE
International Symposium on High Performance Distributed Computing (2001)
55–63, https://doi.org/10.1109/HPDC.2001.945176.

[22] M. Mezzadri, F. Prelz, D. Rebatto, Job submission and control on a generic batch
system: the BLAH experience, J. Phys. Conf. Ser. 331 (6) (2011), 062039,, https://
doi.org/10.1088/1742-6596/331/6/062039.

[23] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buni, F. Hemmer, A. Di Meglio, Edlund,
P. Buncic, Programming the Grid with gLite*, Comput. Methods Sci. Technol. 12
(1) (2006) 33–45, https://doi.org/10.12921/cmst.2006.12.01.33-45.

[24] D. Bradley, S. Dasu, M. Livny, A. Mohapatra, T. Tannenbaum, G. Thain, Condor
enhancements for a rapid-response adaptive computing environment for LHC,
J. Phys. Conf. Ser. 219 (2010), https://doi.org/10.1088/1742-6596/219/6/
062035.

[25] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,
C. Kesselman, S. Meder, L. Pearlman, S. Tuecke, Security for Grid services, High
Performance Distributed Computing, 2003. Proceedings. 12th IEEE International
Symposium on (2003) 48–57, https://doi.org/10.1109/HPDC.2003.1210015.

[26] A. Withers, B. Bockelman, D. Weitzel, D. Brown, J. Gaynor, J. Basney,
T. Tannenbaum, Z. Miller, SciTokens: capability-based secure access to remote
scientific data, Proceedings of the Practice and Experience on Advanced Research
Computing (2018) 1–8, https://doi.org/10.1145/3219104.3219135.

[27] C.T. Gilliland, J. White, B. Gee, R. Kreeftmeijer-Vegter, F. Bietrix, A.E. Ussi,
M. Hajduch, P. Kocis, N. Chiba, R. Hirasawa, M. Suematsu, J. Bryans, S. Newman,
M.D. Hall, C.P. Austin, The fundamental characteristics of a translational scientist,
ACS Pharmacol. Transl. Sci. 2 (3) (2019) 213–216, https://doi.org/10.1021/
acsptsci.9b00022.

[28] J. White, gLite and Condor Present and Future, Condor Week, 2006, https://resea
rch.cs.wisc.edu/htcondor/CondorWeek2006/presentations/whiteegee.pdf.

[29] L. Field, M. Schulz, Grid Deployment Experiences: the Path to a Production Quality
LDAP Based Grid Information System, 2005, https://doi.org/10.5170/CERN-2005-
002.723. http://cds.cern.ch/record/865688.

[30] P. Andreetto, S. Bertocco, F. Capannini, M. Cecchi, A. Dorigo, E. Frizziero,
A. Gianelle, F. Giacomini, M. Mezzadri, S. Monforte, F. Prelz, E. Molinari,
D. Rebatto, M. Sgaravatto, L. Zangrando, Status and developments of the CREAM
computing element service, J. Phys. Conf. Ser. 331 (2011), 062024,, https://doi.
org/10.1088/17426596/331/6/062024.

[31] M. Feller, I. Foster, S. Martin, GT4 GRAM: a functionality and performance study,
Proceedings of TeraGrid Conference (2007).

[32] I. Sfiligoi, S. Padhi, Evaluation of New Compute Element Software for the Open
Science Grid: GRAM5 and CREAM, OSG Document 1006,, 2010, https://osg-docdb.
opensciencegrid.org/0010/001006/001/gram5_cream_1004.pdf.

[33] D. Groep, O. Koeroo, G. Venekamp, Grid Site Access Control and Credential
Mapping to the Unix Domain, Nikhef PDP Tech. Rep. https://www.nikhef.nl/gri
d/LCMAPS.

[34] A. Yoo, M. Jette, M. Grondona, Job scheduling strategies for parallel processing.
Volume 2862 of Lecture Notes in Computer Science, Springer-Verlag, 2003,
pp. 44–60.

[35] B. Bockelman, T. Cartwright, J. Frey, E. Fajardo, B. Lin, M. Selmeci,
T. Tannenbaum, M. Zvada, Commissioning the HTCondor-CE for the open science
grid, J. Phys. Conf. Ser. 664 (2020), 062003,, https://doi.org/10.1088/1742-
6596/664/6/062003.

[36] Byrom, Rob & Cordenonsib, Roney & Cornwall, Linda & Craig, Martin & Djaoui,
Abdeslem & Duncan, Alastair & Fisher, Stephen & Gordon, John & Hicks, Steve &
Kant, Dave & Leakec, Jason & Middleton, Robin, APEL: An implementation of grid
accounting using R-GMA, 2005.

[37] V. Tschopp, Argus: the EMI authorization service, Presentation in EGI User Forum
(2011). https://twiki.cern.ch/twiki/pub/EGEE/AuthorizationFrameworkArchi
ve/20110412-EGI_UF_2011-Argus.ppt.

[38] A. Adams, K. Avila, J. Basney, D. Brunson, R. Cowles, J. Dopheide, T. Fleury,
E. Heymann, F. Hudson, C. Jackson, R. Kiser, M. Krenz, J. Marsteller, B.P. Miller,
S. Piesert, S. Russell, S. Sons, V. Welch, J. Zage, Trusted CI experiences in
cybersecurity and service to open science, PEARC’19: Practice and Experience in
Advanced Research Computing (2019), https://doi.org/10.1145/
3332186.3340601.

[39] B. Lin, HTCondor-CE: managing the grid with HTCondor, Presentation at HEPiX
Fall 2015 Workshop (2015). https://indico.cern.ch/event/384358/contributions/
909195/.

[40] B. Bockelman, HTCondor-CE overview and architecture, Presentation at Workshop
for HTCondor and ARC-CE Users (2016). https://indico.cern.ch/event/467075/
contributions/1143794/.

[41] B. Bockelman, Progress report on the HTCondor-CE, Presentation at European
HTCondor Workshop 2017 (2017). https://indico.cern.ch/event/611296/contri
butions/2608194/.

[42] J. Frey, HTCondor-CE overview and architecture, Presentation at European
HTCondor Workshop 2018 (2018). https://indico.cern.ch/event/733513/contri
butions/3117188/.

[43] G. Thain, HTCondor-CE overview: from clusters to grids, Presentation at European
HTCondor Workshop 2019 (2019). https://indico.cern.ch/event/817927/.

[44] HTCondor & ARC Workshop. http://event.twgrid.org/isgc2019/index.html.
[45] A. Withers, B. Bockelman, D. Weitzel, D.A. Brown, J. Gaynor, J. Basney,

T. Tannenbaum, Z. Miller, SciTokens: capability-based secure access to remote
scientific data, in: PEARC ‘18: Practice and Experience in Advanced Research
Computing, Pittsburgh, PA, USA, July, 2018, https://doi.org/10.1145/
3219104.3219135.

[46] M. Livny, M. Melman, Load balancing in homogeneous broadcast distributed
systems. ACM SIGMETRICS Performance Evaluation Review, 1982, https://doi.
org/10.1145/1010631.801689. April.

[47] D.L. Eager, E.D. Lazowska, J. Zahorjan, A comparison of receiver-initiated and
sender-initiated adaptive load sharing, Acm Sigmetrics Perform. Eval. Rev.
(August) (1985), https://doi.org/10.1145/317786.

Brian Bockelman received a B.S. in Mathematics in 2003 from
the University of West Georgia and M.S. and pH.D. degrees in
Mathematics and Mathematics & Computer Science from the
University of Nebraska-Lincoln (UNL) in 2005 and 2008,
respectively. He has served as research faculty at UNL and,
since 2019, as an associate scientist at the Morgridge Institute
for Research. Dr. Bockelman’s research focuses on distributed
computing and data management ranging from large-scale
scientific endeavors such as the CMS and LIGO experiments
to enabling PI-driven groups on the Open Science Grid.

B. Bockelman et al.

https://doi.org/10.1016/s0167-8191(98)00079-9
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0055
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0055
https://doi.org/10.5170/CERN-2005-002.18
https://doi.org/10.5170/CERN-2005-002.18
https://cds.cern.ch/record/322321
https://cds.cern.ch/record/322321
https://cds.cern.ch/record/510694
http://cds.cern.ch/record/840543
https://cds.cern.ch/record/838359
https://cds.cern.ch/record/838359
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0085
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0085
https://doi.org/10.1109/HCW.1998.666541
https://doi.org/10.1109/HCW.1998.666541
https://doi.org/10.1088/1742-6596/119/6/062044
https://doi.org/10.1088/1742-6596/119/6/062044
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/HPDC.2001.945176
https://doi.org/10.1088/1742-6596/331/6/062039
https://doi.org/10.1088/1742-6596/331/6/062039
https://doi.org/10.12921/cmst.2006.12.01.33-45
https://doi.org/10.1088/1742-6596/219/6/062035
https://doi.org/10.1088/1742-6596/219/6/062035
https://doi.org/10.1109/HPDC.2003.1210015
https://doi.org/10.1145/3219104.3219135
https://doi.org/10.1021/acsptsci.9b00022
https://doi.org/10.1021/acsptsci.9b00022
https://research.cs.wisc.edu/htcondor/CondorWeek2006/presentations/whiteegee.pdf
https://research.cs.wisc.edu/htcondor/CondorWeek2006/presentations/whiteegee.pdf
https://doi.org/10.5170/CERN-2005-002.723
https://doi.org/10.5170/CERN-2005-002.723
http://cds.cern.ch/record/865688
https://doi.org/10.1088/17426596/331/6/062024
https://doi.org/10.1088/17426596/331/6/062024
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0155
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0155
https://osg-docdb.opensciencegrid.org/0010/001006/001/gram5_cream_1004.pdf
https://osg-docdb.opensciencegrid.org/0010/001006/001/gram5_cream_1004.pdf
https://www.nikhef.nl/grid/LCMAPS
https://www.nikhef.nl/grid/LCMAPS
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0170
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0170
http://refhub.elsevier.com/S1877-7503(20)30514-7/sbref0170
https://doi.org/10.1088/1742-6596/664/6/062003
https://doi.org/10.1088/1742-6596/664/6/062003
https://twiki.cern.ch/twiki/pub/EGEE/AuthorizationFrameworkArchive/20110412-EGI_UF_2011-Argus.ppt
https://twiki.cern.ch/twiki/pub/EGEE/AuthorizationFrameworkArchive/20110412-EGI_UF_2011-Argus.ppt
https://doi.org/10.1145/3332186.3340601
https://doi.org/10.1145/3332186.3340601
https://indico.cern.ch/event/384358/contributions/909195/
https://indico.cern.ch/event/384358/contributions/909195/
https://indico.cern.ch/event/467075/contributions/1143794/
https://indico.cern.ch/event/467075/contributions/1143794/
https://indico.cern.ch/event/611296/contributions/2608194/
https://indico.cern.ch/event/611296/contributions/2608194/
https://indico.cern.ch/event/733513/contributions/3117188/
https://indico.cern.ch/event/733513/contributions/3117188/
https://indico.cern.ch/event/817927/
http://event.twgrid.org/isgc2019/index.html
https://doi.org/10.1145/3219104.3219135
https://doi.org/10.1145/3219104.3219135
https://doi.org/10.1145/1010631.801689
https://doi.org/10.1145/1010631.801689
https://doi.org/10.1145/317786

Journal of Computational Science xxx (xxxx) xxx

8

Miron Livny received a B.Sc. degree in Physics and Mathe-
matics in 1975 from the Hebrew University and M.Sc. and pH.
D. degrees in Computer Science from the Weizmann Institute of
Science in 1978 and 1984, respectively. Since 1983 he has been
on the Computer Sciences Department faculty at the University
of Wisconsin-Madison, where he is currently the John P.
Morgridge Professor of Computer Science, the director of the
Center for High Throughput Computing (CHTC), is leading the
HTCondor project and serves as the technical director of the
Open Science Grid (OSG). He is a member of the scientific
leadership team of the Morgridge Institute of Research and is
serving as the Chief Technology Officer of the Wisconsin In-
stitutes of Discovery. Dr. Livny’s research focuses on distrib-
uted processing and data management systems and involves
close collaboration with researchers from a wide spectrum of
disciplines. He pioneered the area of High Throughput
Computing (HTC) and developed frameworks and software
tools that have been widely adopted by academic and com-
mercial organizations around the world. Livny is the recipient
of the 2006 ACM SIGMOD Test of Time Award the 2013 HPDC
Achievement Award and the 2020 IEEE TCDP Outstanding
Technical Achievement Award.

Brian Lin received a B.Sc. in Atmospheric Sciences and Physics
from McGill University and is the current Software Area
Coordinator for the Open Science Grid (OSG). He leads the
team responsible for packaging, integrating, and supporting
the OSG software stack. Lin is the current maintainer of the
HTCondor-CE, having overseen its development in the last five
years.

Francesco Prelz works for the Italian National Institute for
Nuclear Physics (INFN) in Milan as a director of technology. He
has a long history of work in distributed computing for the
Large Hadron Collider (LHC), contributing to European pro-
jects from the European Data Grid to the gLite project to the
European Middleware Initiative. He is the driving force behind
the BLAHP, which serves to integrate middleware such as the
CREAM CE or the HTCondor-CE and local batch systems.

B. Bockelman et al.

	Principles, technologies, and time: The translational journey of the HTCondor-CE
	1 Introduction
	2 Background and context
	2.1 The OSG compute federation
	2.2 Functionality needed by a CE
	2.3 The HTCondor-CE architecture

	3 Translation process
	3.1 From lab to the locale
	3.2 From locale to the community

	4 Impact and lessons learned
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	References

