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Abstract. The HTCondor-CE is the next-generation gateway software for the Open Science
Grid (OSG). This is responsible for providing a network service which authorizes remote users
and provides a resource provisioning service (other well-known gateways include Globus GRAM,
CREAM, Arc-CE, and Openstacks Nova). Based on the venerable HTCondor software, this new
CE is simply a highly-specialized configuration of HTCondor. It was developed and adopted to
provide the OSG with a more flexible, scalable, and easier-to-manage gateway software. Further,
the focus of the HTCondor-CE is not job submission (as in GRAM or CREAM) but resource
provisioning. This software does not exist in a vacuum: to deploy this gateway across the OSG,
we had to integrate it with the CE configuration, deploy a corresponding information service,
coordinate with sites, and overhaul our documentation.

1. Introduction
The Open Science Grid (OSG) is a national, distributed partnership for data-intensive science
[1]. It is a world leader in distributed high-throughput computing, which focuses on maximizing
usage of computing resources throughput a distributed infrastructure. For the OSG, the key
component of the distributed infrastructure consists of approximately 100 computing clusters,
mostly within the US.

In order to assemble the disparate set of computing resources into a coherent whole, OSG
virtual organizations (VOs) utilize a technique called “resource provisioning.” Through starting
virtual machines or processes within a batch system, remote resources are “acquired” and added
to a global pool of resources. In the case of the GlideinWMS [2] service used by multiple OSG
VOs, the global pool of resources is a HTCondor [3] pool; the batch system worker node startup
script launches a HTCondor worker node. Effectively, this allows the VO to create a global
HTCondor batch system that grows and shrinks with the availability of worker nodes at remote
clusters.

There are several models for acquiring resources at a site; the classic mechanism is to have
a central factory which submits resource requests to a site-specific gateway. A gateway has the
following three responsibilities:

• Remote submission: Submission of a resource request from a remote client to the CE
service.
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• Authentication and Authorization: Establishing the identity of the remote client and
determining whether it is authorized to use the CE service.

• Request Routing: Conversion of the resource request from an abstract description
to a concrete request into the local resource management system. This includes
the transformation and tracking of the resource instance through its lifetime
(submit/status/kill).

The request is materialized as a pilot job running within a batch system. Historically, the
resource allocation model grew out of the infrastructure designed for remote job submission
model; resource allocation requests were made to look identical to a job submitted remotely to
the cluster.

The OSG has recently introduced new gateway software, the HTCondor-CE. This new
gateway is tailored to meet the needs of the resource provisioning problem without carrying the
baggage of the previous remote job submission model. It is meant to be a scalable, flexible, and
easy-to-operate service. The HTCondor-CE integrates within the larger product; the OSG-CE,
in turn, is meant to integrate with various central OSG services.

In Section 2, we provide an overview of commonly-used gateway software. Section 3 provides
an overview of the constituent components of the HTCondor-CE. The primary CE integration
and commissioning work is discussed in Section 4. Section 5 gives a few results and metrics
about the CE. Finally, in 6, we discuss conclusions and future work.

2. Background
2.1. Job gateways
As described in Section 1, a gateway is a mechanism for acquiring resources at a computational
site; a job gateway is specifically a gateway that provides access to a resources managed by a
batch system (such as HTCondor, PBS or others). Before being used for resource provisioning,
end-users would submit jobs directly to a single resource - or have the job submitted to the “best”
available resource (according to some ranking metric) through the use of a resource broker.

The difference between resource acquisition and brokering is often explained through a grocery
store analogy. Suppose there are ten lines to checkout in a store; each has a different-length line
moving at an unknown rate. In the resource brokering model, you would estimate which line is
shortest and stand in that. In the resource acquisition model, you would have ten people stand
in different lines; the first person to get to the checkout register will give you her place in line.

Besides the HTCondor-CE described in this paper, commonly-used gateways include Globus
GRAM (the previous gateway used by OSG) [4], CREAM [5], Arc-CE [6], and BOSCO [7].
Table 1 does a simple comparison between these systems.

Table 1: A high-level comparison of job gateways.

Name Remote Submission Routing Auth

GRAM GRAM (custom binary protocol) Custom Perl scripts GSI (X509-based)
CREAM SOAP API blahp daemon [8] GSI
Arc-CE GridFTP-based Custom shell scripts GSI
BOSCO SSH blahp daemon SSH public keys
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2.2. Pilot Systems
The method of resource acquisition on the OSG is a “pilot system”; it is envisioned that these
are the most common users of the HTCondor-CE. The most popular examples on the OSG are
PanDA [9] and GlideinWMS [2].

In these systems, end-users submit jobs to a central, global queue. The system will match
the jobs to one or more compute resources; the aggregate of these matches forms a measurement
of pressure for each site.

Based on the per-site pressure, a separate component (the “factory”) submits generic jobs
to the site gateway; it attempts to keep a fixed number of idle jobs in queue (up to a certain
max running limit). These generic jobs - referred to as “pilot jobs” - enter the site batch queue.
When started, they will connect to the central queue and run one or more end-user jobs. Thus,
the pilots and central queue form a global batch system composed of resources acquired from
each site. See Figure 1.

Central Queue

Compute Site

Pilot
Pilot

Pilot
Pilot

Factory

Gateway

Request Resources

Submits
Grid Jobs

Submits Payload Jobs
Joins Pool

Figure 1: An overview of the pilot model for resource provisioning.

2.3. Other Resource Acquisition Models
While our work on the HTCondor-CE is partly motivated by addressing the needs of pilot
systems, it should be mentioned there’s a plethora of resource allocation (how a resource is
assigned to an entity) and acquisition (once allocated, how a resource is accessed by the remote
entity) models. In the Vac model [10], the site starts a specified VM image for a VO which starts
a pilot that joins the global pool of resources (the resource appears “as if from the vacuum,”
hence the name). The site decides the number of appropriate VMs to launch and manages the
credentials used to join the pool. With Amazon Web Service’s CloudFormations [11] service, the
VO specifies a template describing policies for when to launch VMs and provides the security
credentials to use.

3. Composition of the HTCondor-CE
At its core, the HTCondor-CE is a special single-host configuration HTCondor. All running
daemons are part of the HTCondor batch system - albeit in a non-standard configuration.
The high-level gateway functions are provided by a combination of the condor schedd,
condor job router and blahp daemons.

• Remote Submission: Requests are submitted to a condor schedd daemon as a ClassAd
[12], a key-value-like description of the request and a set of input files (such as the pilot
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startup script). The protocol between client and host is referred to as HTCondor-C and is
built on top of the CEDAR [13] communication library.

• Authentication and Authorization: Authentication with the condor schedd is done
at the CEDAR transport layer. CEDAR allows the client to negotiate an appropriate
authentication protocol (such as SSL, GSI, local filesystem, or Kerberos); for the HTCondor-
CE, we utilize the GSI support. This allows us to invoke the Globus callout library to
perform the mapping from a GSI proxy certificate to a user name; HTCondor’s existing
authorization policy layer allows fine-grained control over what actions each user may
perform.

• Request Routing Once a request has been submitted to the HTCondor-CE’s
condor schedd, it must be customized according to the site’s policy and sent to the site’s
batch system. The condor job router examines incoming jobs and creates a transformed
copy according to a set of site policies called job routes, which are examined at length in
Section 3.1. The jobs are not run as a vanilla HTCondor batch system job, but forwarded to
the site batch system using Condor-C for HTCondor batch systems or the blahp for all other
batch systems; both Condor-C and the blahp transform the job ad into an appropriate job
description file and manages basic job lifecycle activities such as submission, status queries,
and job deletion. For example, when the site uses the PBS batch system, the blahp is
the component which invokes qsub, qstat, and qdel for submit, status, and deletion,
respectively.

Figure 2 illustrates the processes that typically run on the CE for a site with a HTCondor
backend.

HTCondor-CE host HTCondor Central Manager 
Host

HTCondor-CE service HTCondor Scheduler 
service

condor_master

condor_collector

condor_schedd

condor_job_router

condor_master

condor_schedd

condor_shadowcondor_shadowcondor_shadow

condor_master

condor_collector

condor_negotiator

Figure 2: An overview of the processes present on the CE for a HTCondor backend. Note
the CE’s condor job router is responsible for communication between the CE and the site
batch system; the condor schedd joins the site batch system by advertising its presence to the
collector

Submission to the CE is typically done through the use of Condor-G [14]; however, Section
4 discusses command line tools available for testing. From client to batch system, there exists
several views of the submitted job:

• Client job This is the initial copy of the pilot job submitted to the queue on the glidein
factory. From the glidein factory, it is submitted to the HTCondor-CE using the Condor-C
submission protocol.

• Grid job This is the initial copy of the job on the CE; it is specified completely by the
client submitter and has not been customized to fit site policy.

• Routed job A site-customized version of the job, after applying the edits specified by the
condor job router.
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• Batch system job The final version of the job, submitted to the site’s batch system. In
the special case of the HTCondor backend, the condor job router can route directly from
the grid job to the backend batch system; in this case, the routed job and the batch system
job are the same thing. Otherwise, the routed job is managed by the HTCondor-CE’s
condor schedd.

Figure 3 outlines the job submission and execution process for a PBS-based site.

PBS Case

HTCondor-CE Schedd

PBS

Job Router Transform

Grid Job

Routed Job (grid uni)

PBS Job

blahp-based transform

Submit Host

HTCondor Schedd

Job (grid universe)

HTCondor-C submit

Figure 3: The sequence of job transforms from the submit host (a pilot factory) to the site’s
batch system.

3.1. Job Routes
The HTCondor-CE is unique among job gateway software in that, the HTCondor JobRouter
[15] has an explicit, declarative language for expressing how to transform a resource request into
a site job.

For each incoming job, the JobRouter will iterate through a list of routes and perform
matchmaking to select a destination for the job. The route is a ClassAd specifying a requirements
expression and a list of attributes to set, edit, and delete for matching jobs. See Figure 4 for an
example of job routes; the full domain language is covered in [16]. This mechanism allows the
site to express policies such as “CMS-owned jobs go to PBS queue cms while all other jobs go
to PBS queue other.”

Critically, routing allows us to maintain an abstraction layer. The router allows remote
submitters to simply describe the resources needed. There is no need to describe site-internal
details such as queue names or other site-custom attributes. As the ClassAd describing the grid
job is schema-free, VOs and cooperating sites can define their own extensions without requiring
a new release of the CE; the site and VO must agree on the attribute semantics and the CE
administrator must implement these semantics using the job routes.

4. Commissioning the CE
4.1. Integration with the OSG-CE
At HTCondor-CE’s conception, the OSG-CE software stack was a mature product with the
Globus GRAM Gateway as its job gateway solution (as mentioned in Section 2). The migration
from GRAM to HTCondor-CE required extensive manual QA testing and automated nightly
testing. Initial rollout proceeded one volunteer site until approximately five CEs were in
production; subsequently, we worked to convert all WLCG T2 sites (some urgency was provided
by the restart of the LHC). For remaining sites, we have a goal of dropping GRAM support by
April 2016.

The most difficult piece was the validation of all OSG-supported batch systems with most
of the troubleshooting centering around the condor job router and the blahp. HTCondor-CE
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Grid Job
Transform

Routed Job
Cmd="myscript.sh"
VO="cms"
Color="blue"
RequestMemory=2000
TransferInput=false
foo = "bar"
baz = 1

set_Routed=true
delete_foo=true
eval_set_queue= \
  ifThenElse(...)
eval_set_baz= \
  baz + 1

Cmd="myscript.sh"
VO="cms"
Color="blue"
RequestMemory=2000
TransferInput=false
queue="cms_queue"
Routed=true
baz = 2

Input Output

Figure 4: A simple illustration of a job route and how it transforms a grid job to a routed job.
For example, note how the attribute baz=1 in the grid job is set to the value of 2 in the routed
job by the evaluation of the statement eval set baz = baz + 1 in the transformation.

made unprecedented and heavy use of these components, which revealed bugs in the blahp

and a lack of examples in the HTCondor JobRouter documentation. As site testing ramped
up, job router configuration became a documentation priority. Comprehensive installation
and troubleshooting guides soon followed, allowing more sites to come up more quickly. One
lesson learned is the HTCondor-CE documentation needed to be significantly better than the
previous GRAM documentation; site admins were silently ignoring deficiencies in the GRAM
documentation because they had ten years’ experience with the product.

Although HTCondor-CE strives to be only a special configuration of HTCondor, we found it
advantageous to develop a few debugging tools:

• condor ce job router info: A command line tool which parses and executes the
JobRouter logic. This allows sysadmins to check their routes for configuration errors and
manually test the route against a specified job.

• condor ce trace: A tool which systematically tests each functional layer of the HTCondor-
CE from service discovery to batch system integration. This allows admins to test end-to-
end functionality and to isolate the problematic layer when the CE is not working.

• condor ce run: A tool for launching a single script on the remote host; useful for debugging
remote systems, although not appropriate for running more than one or two jobs at a time.

Much of the other technical integration work was straightforward and resulted in changes
to factory job submission, updates to the automated configuration tool, and the Resource and
Service Validation (RSV) monitoring software.

4.2. Providing Resource Provisioning Information Services
For factories to discover available resources to provision, an information discovery service is
needed. Historically, the OSG information services were focused on describing the state of a
batch system: they provided information about each batch queue, the number of jobs in queue
per VO, and the estimated response time. This was necessary for resource-broker submission -
users needed to estimate which site was likely to finish their job first.

However, a new approach is needed for resource provisioning. The condor schedd generates
a HTCondor ClassAd containing the CE’s contact information and a resource catalog. The
resource catalog is a list of sub-ClassAds describing all resource types at the site and the pilot
job attributes necessary to access the resource. For example, the site might require the pilot to
specify an attribute foo = "blue" to access multicore resources. The factory does not need to
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understand the semantics of the attribute “foo”, just that it must be set to access the multicore
batch slots.

The resource catalog model is analogous to Amazon EC2’s webpage listing available instance
types and EC2 users requesting a given instance in their request. Unlike the previous model,
we purposely do not attempt to advertise the number of running pilots or available resources in
the cluster.

5. Performance Results
As mentioned in Section 1 HTCondor-CE is meant to be a scalable service; to verify, the
OSG Software team performed scale tests analogous to prior GRAM tests [17]. These focus
on measuring submission rates and the maximum sustained running jobs.

To perform these large scale tests without impacting real jobs running at a site a
sleeper/shadow pool was used. A sleeper pool is a batch system deployed in parallel to a
production pool (on the same worker nodes); jobs running in this separate pool by policy may
not use CPU or other resources (network, disk or memory).

Along with a sleeper pool, we created an artificial load of submissions to the new CE, using
the same Condor-G tool as production factories. This load was created using the loadtest condor
[18] updated to submit to the HTCondor-CE . We used tests 8 hour long jobs (typical production
pilots are 48 hours), 100 jobs were kept idle in the CE queue at all time and input sandboxes of
50KB were used.

The maximum submission rate observed was of 70 jobs per minute and an average of 60 jobs
per minute; the ramp-up is illustrated in Figure 5a. The maximum number of running jobs a
single HTCondor-CE achieved was approximately 16,000 parallel running jobs, as can be seen in
Figure 5b. This is twice as what is currently needed by any single site using the OSG software
stack and the current limit of our sleeper pool.

The level of adoption of the new CE software can be observed by the number of entries at
the CE Collector mentioned in Section 4.2. At the time of writing, 25 endpoints are reporting
to the collector.

(a) The ramp up of 70 jobs per minute from idle
state to running in an HTCondor-CE.

(b) A test illustrating 16,000 parallel jobs through
a single CE.

Figure 5: Results from performance testing.
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6. Conclusions and Future Work
We have successfully commissioned the HTCondor-CE for the OSG. We achieved our goals of
constructing a job gateway solely out of HTCondor-based components, minimizing the amount
of software maintenance. The HTCondor-CE is continuing to roll out to additional OSG sites
and OSG is improving integration with the OSG-CE product.

Until now, we have focused on feature parity with GRAM gateway. In the future, we hope
to expand on the “resource provisioning” model; in particular, future versions of HTCondor
add support for container-based technologies such as Docker. We believe the future HTCondor-
CE will be able to seamlessly provision resources for batch systems, containers, and VM-based
resources.
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