
SHARING; IN A PRIVATELY OWNED
WORKSTATION ENVIRONNENT

MATT WALTER MUTKA

Computer Sciences Technical Report #78 1

July 1988

i

SHARING IN A PRIVATELY OWNED WORKSTATION ENVIRONMENT

by

MATT WALTER MIJTKA

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN - MADISON

1988

i
i

i

ABSTRACT

Private workstations interconnected by networks have become widely available as sources of computing
cycles. Each workstation is typically owned by a single user in order to provide a high quality of service for the
owner. In most cases, an owner does not have computing demands as large as the capacity of the workstation.
Therefore, most of the workstations are often under utilized. Nevertheless, some users have demands that exceed
the capacities of their workstations. The desire to satisfy the requirements of users who need extra capacity without
lowering the quality of service of owners of under utilized workstations raises the following challenging question:
Can we provide a high quality of service in a highly utilized workstation cluster?

The problem identified by this question is how to share workstation capacity with minimal interference with
the local activity of workstation owners. This thesis addresses this problem of capacity sharing by exploring issues
involved with the formation of a processor bunk from a workstation cluster. The capacity of the processor bank
comes from the donation of workstations during periods that the stations are not used locally. During periods of
local usage, the workstations are withdrawn from the processor bank. We examined the amount of capacity
available for donation, and the characteristics of the donation and withdrawal periods.

A design of a system that enables users to share capacity on the basis of time and availability is presented.
Since users who want to share capacity might have widely varying demands, we developed an algorithm that gives a
high quality of service to light users in the presence of heavy users. If naive algorithms are used for allocating
capacity, the quality of service experienced by light users will degrade when a few heavy users try to monopolize
the processor bank.

Condor is the realization of our design of a system that allocates capacity on the basis of availability. It has
been operating in our computing environment for several months. During this time, heavy and light users have
benefited from the capacity they received from a processor bank. A performance profire gives evidence that the
quality of service of light users is almost not affected by heavy users. Condor has shown that a processor bank
foImed from a workstation cluster can be an effective means of improving the productivity of a computing
environment.

ii

ACKNOWLEDGEMEXTS

I am indebted to my advisor, Professor Miron Livny, who has guided me in this research and helped me
organize my ideas so that they could be more clearly expressed. I am thankful for his persistent support of this
work.

I wish to thank the readers on my thesis committee: Professors David DeWitt and Mary Vernon. They
provided insightful comments and criticisms. I appreciate the time and energy that Professor Mary Vernon has
given to the weekly performance seminar. I thank the non-readers on the committee, Professors Bart Miller and
Charles Kime, for taking the time to provide their useful comments.

Michael Litzkow deserves special credit for his implementation work on the Condor system, from which I
was able to obtain data for my research. I thank him for his willingness to make modifications in the system to
accommodate the data collection that I needed. Yeshayahu Artsy, Hung-Yang Chang, and Phil Krueger, fellow
students of Professor Livny, deserve thanks for their discussion of issues that arose in the course of this work.

Professor David DeWitt provided me with a research assistantship for several semesters as part of the Crystal
and Topaz projects, of which I am thankful. This research was supported in part by the National Science
Foundation under grants MCS81-05904 and DCR-8512862, and by a Digital Equipment Corporation External
Research Grant.

On a personal level, I wish w thank my parents, Walter and Ann Mutka, for the many years of support that
they have given me. The high value which they placed on education encouraged me to continue with my graduate
study. My most special thanks goes to my wife, Janice Marie Mutka, for all of her encouragement and support. I
appreciate the hours she spent proofreading this dissertation. She has been a valuable parmer and friend, and it is to
her that I dedicate this dissertation.

iii

TABLE OF CONTENTS

ABSTRACT ..
ACKNOWLEDGEMENTS ...
Chapter 1 Introduction ..

1.1. A Processor Bank ..
1.1.L Forming the Processor Bank ..
1.1.2. Allocating the Power of the Processor Bank to Users ...
1.13. Long TeIm Scheduling ...

1.2. Thesis Structure ..
1.1.4. Design andEvaluation Issues for a Long TeIm Scheduler ..

Chapter 2 Related Work ..
2.1. Related Distributed Systems ...
2.2. Scheduling Remote Capacity For Users ...
2.3. Recent Workload Characterizations ...

Chapter 3 Workstation Usage Profile ...
3.1. Introduction ...
3.2. Technique Of Acquiring Data ...
33 . Monthly And Daily Variation Of Availability Of Woxkstations ..
3.4. Model of Workstation Usage Patterns ..

3.4.1. Distribution Of Usage Patterns ..
3.4.2. Correlation Of Available And Non-Available States ..
3.4.3. Development Of Stochastic Models ...

3.5. Summary ...
Chapter 4 Sharing the Resources of a Processor Bank ...

4.1. Inboduction ...
4.2. System Design ..

4.2.1. Scheduling Structure ..
4.2.2. TheRemoteUnix (RU) Facility ...
4.23. Checkpointing ..

4.3. Allocation of Capacity of theProcessor Bank ..
4.4. Scheduling Remote Jhocessing Cycles ...

4.4.1. The Up-Down Algorithm ...
4.4.2. Algorithms Used For Comparisons ..
4.43. Simulation Study Results ...

4.5. Summary ...

1

ii

1
1
2
.2
3
4
5

9
9
9

10
14
15
18
19
20

21
21
21
22
23
23
24
25
25
27
28
31

Chapter 5 Performance Profile of the Condor System ... 32
5.1. Introduction 32
5.2. Performance .. 32

35

...
5.2.1. Impact on Local Workstations ...

iv

5.3. Discussion ...
5.4. Summary ...

Chapter 6 Reserving Capacity of the Processor Bank ..
6.1. Introduction ...
6.2. Usage Patterns of Workstations ..
63 . Design of the Reservation System ..

63.1. The Free-Market Algorithm ...
63.2. User Interface of the Reservation System ..
6 3 3 . Reservation Coordinator's Tables ..
63.4. Tables Used By The Local Handler ...

6.4. Summary ...
Chapter 7 Conclusions and Future Research Directions ..

7.1. Conclusions ...
7.2.Future Research Directions ...

Protection Issues ..
Scheduling Parallel Computations on a Cluster of Workstations ..
Enhancements to Condor ...
RJ3ERF.NC %S ..

Sharing Capacity in a Wide Area Network ...

37
38

39
39
39
45
46
49
50
54
55

56
56
57
57
57
57
58
59

i

V

LIST OF FIGURES

Figure 3.1: Availability Of Remote Cycles (Month To Month) ...
Figure 3.2 Availability of Remote Cycles During Weekdays ..
Figure 3.3: Availability of Remote Cycles During Weekends ..
Figure 3.4 System And Individual Station Utilization ...
Figure 3.5 Bernoulli and Binomial Probability Density Functions ...
Figure 3.8 Distribution of AV State Lengths of All Stations ...
Figure 3.9 Distribution Of NA State Lengths Of All Stations ...
Figure 3.10: Ilistribution Of AV State Lengths Of All Stations ...
Figure 3.11: Distribution Of NA State Lengths OF All Stations ...
Figure 3.12 Conditional Probability of AV. NA State Changes ...
Figure 3.13: Conditional Probability of AV to AV State Changes ..
Figure 3.14: conditional Probability of NA toNA State Changes ..
Figure 4.1: The Scheduling Structure ..
Figure 4.2 Modification Of Station i Schedule Index ..
Figure 4.3: Remote Cycle Wait Ratio (LighrSrurions) ...
Figure 4.5: Percent Of LighrStun'ons Job Cycles Executed Remotely ...
Figure 4.6 Remote Response Ratio (LighfStutions) ..
Figure 5.1: Profile Of Service Demand ...

Figure 5.3: Average Wait Ratio ...
Figure 5.4: Utilization of Remote Resources ..
Figure 5.6 One Week Queue Length ..
Figure 5.7: Rate Of Checkpointing ..
Figure 5.8: Remote Execution Leverage ...
Figure 6.1: Hourly Availability ...
Figure 6.2 System Availability Profile ..
Figure 6.3: Average Hourly Preemption Rate ..
Figure 6.4: Weekday Preemption Rate ...
Figure 6.5: Preemption Rate Experienced by Users ..
Figure 6.6 Reservation System Structure ...
Figure 6.7: Local Handler's Flow Chart ...

Figure 4.4 Remote Cycles Wait Ratio (MediumStution) ...

Figure 5.2 Queue Length ..

Figure 5.5 Utilization for One Week ..

11
12
12
14
14
15
15
17
17
18
19
19
23
28
30
30
31
31
33
33
34
35
36
36
37
37
40
40
41
41
42
45
51

J

I

*

LIST OF TABLES

Table 3.1: Availability Of Stations From Month To Month ...
Table 3.2 Utilization Of Individual Stations For One Hour Periods ..
Table 3.3: Relative Frequency Distribution Of System Utilization. SU ...
Table 4.1: Simulation Parameters ..
Table 4.2 Allocation Of Processor Bank Nodes For Background Jobs ..
Table 4.3: Modification Of The Schedule Index Table (SI) ..
Table 4.4: Simulation Parameter Settings ...
Table 4.5: Up-Down Schedule Index Functions ...
Table 5.1: Profile of User Service Requests ...
Table 6.1: Utilization During Weekdays and Weekends ...
Table 6.2 Long Reservable Intervals ...
Table 6.3: Free-Market Algorithm ParameteIs ...
Table 6.4 Free-MaIket Algorithm Suggested Parameter Settings ...
Table 6.5: Reservation System User Commands
Table 6.6 System Table ...
Table 6.7: Accounting List ...
Table 6.8: Global Reservation Table ..
Table 6.9: List Of Reservations ..
Table 6.10 Global Availability Table ..
Table 6.11: Reservation Request Table ..
Table 6.12 Reservation Request Acknowledgement ...

11
13
13
24
26
27
28
29
32
43
44
47
48
50
52
53
53
53
54
54
55

CHAFTER 1

Introduction

In recent years the computing power at a broad range of institutions has proliferated. This creates
opportunities for people to explore many avenues when searching solution paths of new problems. Modem
computing facilities are composed of multiuser computers, private workstations, file servers, printers, and
specialized hardware interconnected by high capacity networks. Networks enable resource sharing and information
exchange through computer mail and file transfer systems.

Workstations are a resource whose numbers have increased dramatically in the last few years, accounting for
most of the proliferation of computing power. Modem workstations are powerful machines capable of computing
several million instructions each second. Each workstation is generally the private resource of its owner, so that the
ownership of the computing capacity is, in many institutions, distributed among the users.

Akhough several users could jointly own a workstation, workstations are typically owned by a single user.
An user has her own workstation in order to receive immediate access to computing resources without interference
from other users. The owner has full contrql of the access of others to the station’s resources. In most cases an
owner does not have computing demands as large as the capacity of the workstation. This means most workstations
are under utilized. Nevertheless, some users face the problem that the capacity of their workstations is much too
small to meet their processing demands. These users would like to take advantage of any available capacity they
can access to support their needs. The capacity available fiom clusters of under utilized workstations has the
potential to satisfy users who have large service demands. Therefore, modern processing environments that consist
of large clusters of workstations interconnected by high capacity networks raise the following challenging question:
Can we satisfy the needs of the users who need extra capacity without lowering the quality of service experienced
by the owners of under utilized workstations? In other words, can we provide a high quality of service in a highly
utilized cIuster of workstations?

The solution to the problem identified by this question requires the sharing of workstation capacity with
minimal interference with the local activity of workstation owners. Computing environments composed of
individually owned workstations generally have been shared with only crude and ineffective methods. For example,
an owner of a workstation might offer an account on her machine to several foreign users. A foreign user is one
who does not own the workstation he is using. Regardless that foreign users have been given access to a
workstation, the owner might demand exclusive access when she has jobs to run. She does not want foreign users to
interfere with her local activity. When the owner is not using the woIkstation, the foreign users compete for its
capacity. A foreign user consuming resources on a workstation should be prepared to leave the station when the
owner returns. Otherwise, all work the foreign user had in pxog~ess might be destroyed by the returning owner
when she demands exclusive access to the workstation.

The lack of facilities for resource sharing creates a cumbersome environment for both workstation owners and
foIeign users. The owners suffer since it is difficult to control the periods that foreign users consume resources once
access rights have been given to them. The foreign users suffer because the resources will often remain available
when they would like to receive them. This is due to their inadequate knowledge of when the owners are using their
workstations, and the need for an account on the machines ta use them. This unfortunate situation is an example of
the wait while idle condition [Livny82], where jobs wait while resources are idle.

1.1. A Processor Bank
A much more effective approach of resource sharing of a cluster of workstations is through the concept of a

processor bunk. A group of computing resources designated for users to share is a processor bank. It can include
piocessors that are dedicated for public usage, and private woIkstations that are donated and withdrawn
dynamically. An owner donates the capacity of her workstation to the processor bank when the workstation is not
needed locally. Capacity is withdrawn during periods of local activity when the owner no longer wants to share.

1

2

This thesis addresses the issues involved in the formation of a processor bank built from a cluster of
workstations and the sharing of its capacity. Due to the expanding number of environments where workstations are
the primary source of computing cycles, we focus our attention on a processor bank that is composed only of private
workstations. No computers are dedicated exclusively to the processor bank. The processor hank is a dynamic
collection of resources which grows when capacity is donated and shrinks when capacity is withdrawn.

We distinguish between the allocation and ownership of the resources of the processor bank. A private
workstation is donated to the processor bank by its owner without relinquishing ownership. Although the donated
capacity of the processor bank is temporarily allocated to users who do not own it, each individual resource remains
under the control of its owner. The owner can regain the allocation of the resource whenever she wishes.

1.1.1. Forming the Processor Bank
The processor bank is formed by users who donate the capacity of their workstations. Capacity can be

donated to and withdrawn from the processor bank by either manual or automatic mechanisms. Manual
mechanisms are implicit or explicit actions that an owner conducts. An example of an implicit mechanism is the use
of the login program to determine if the workstation is donated or withdrawn. The donation occurs when the owner
"logs off" the workstation, and the withdrawal occurs when the owner "logs on" the workstation. In an explicit
mechanism, the user has a specific command to donate or withdraw the workstation.

An owner is insured by a manual mechanism that a foreign job will not be placed on her workstation when
she explicitly or implicitly withdraws the station from the processor bank. Nevertheless, capacity sharing through
the processor bank by a manual mechanism can be ineffective. For example, an implicit manual mechanism by
means of the login program causes an inadequate amount of capacity to be donated to the processor bank. Owners
rarely "log off" of their workstations even if they leave them inactive for long periods. Likewise, an explicit manual
mechanism is deficient because a user forgets to donate a workstation when he leaves it available, or fails to
withdraw it when he resumes local activity. If he forgets to withdraw the capacity, he will suffer a decrease in his
quality of service locally. This might inhibit his desire to donate his workstation at a later time. An automatic
donation and withdrawal mechanism can overcome this problem.

An automatic mechanism withdraws capacity when an owner resumes local activity on a workstation, and
donates capacity when there is no local activity, However, an owner loses some control of his workstation with an
automatic mechanism. The automatic mechanism might not withdraw a workstation from the processor bank at a
precise moment that the owner wants it withdrawn, which causes him to suffer some interference from a user of the
piocessor bank. Nevertheless, we believe that an automatic mechanism can bring a large amount of capacity to the
processor bank while insuring little intexference of foreign users with workstation owners. In order to construct an
automatic donation and withdrawal mechanism, one must define the tolerance an owner has to sharing capacity with
others. On one hand, many owners tolerate a small amount of sharing even at times that the owners execute local
programs, and on the other hand some owners might strongly object if any of their workstations' capacity is shared
with foreign users. The differing attitudes among workstation owners cause a range of possible definitions of when
a workstation is available for donation to the processor bank.

A critical issue, given the mechanism used to form the processor bank, is whether enough capacity is
available for sharing. Do a workstation owner's usage patterns allow for many long periods that a station can be
donated? Are large amounts of donated capacity available when users demand it the most? These questions, which
are concerned with the profile of workstation activity and the amount of capacity the owners donate to a processor
bank, must be addressed. To address this issue, we have observed the usage of a cluster of workstations, and have
found that more than 70% of the capacity of workstations can be donated to the processor bank for sharing. For our
observations, a workstation was available for donation to the processor bank only if it had not been used locally
within the last five minutes. A workstations was withdrawn as soon as it had local activity. With this approach to
defining availability, we observe a large amount of capacity donated to the processor bank with little intexference to
workstation owners. We believe that our automatic mechanism is a good approach for forming the processor bank.

1.1.2. Allocating the Power of the Processor Bank to Users
The capacity of the processor bank can be allocated to a user on the basis of time or availability. Capacity is

allocated on the basis of time to a user who reserves one or more machines for a particular time of day. A user may
need to reserve capacity during specified periods to conduct research or software development activities in a

3

distributed environment. Specific periods might be reserved by a user to interactively debug his distributed
program. Other allocations are made as capacity becomes available, regardless of the time of day. A user with a
number of jobs wants to be allocated several stations to execute his jobs whenever he can get them.

When a user is allocated capacity fmm the processor bank, he receives apartifion of machines. A partition is
a group of machines that is allocated to a user on the basis of time or availability. A user obtains the resources of a
partition for his own use and does not share it with others for the duration of the allocation.

There is a large demand for a processor bank to allocate partitions on the basis of availability. Within our
department there are users working on problems that require the execution of many computationally intensive jobs,
called background jobs, that run for long periods of time without any interaction with their users. A few example
problems include studies of load-balancing algorithms [Krueger88], simulation of real-time scheduling algorithms
[Chang85], studies of neural network learning models LSandon871, and mathematical combinatorial problems
lChavey861. Users want to acquire capacity from the processor bank to execute these background jobs.

Some jobs are served better on their local workstation and are inappropriate for execution at the processor
bank. These jobs require a lot of interaction with files or with their users (which we call interactive jobs), or are
short, requiring only a small amount of CPCJ capacity. There are two reasons for executing these jobs at their local
workstation. First, the overhead required to allocate capacity of the processor bank to a user for his interactive and
short jobs might be large when compared to the service demands of these jobs. If these jobs were executed at the
processor bank, they might spend much of the time waiting relative to their processing requirements. The second
reason is that our observations indicate that the load of a workstation is more affected by background jobs which

background jobs to the processor bank, instead of short and interactive jobs.
The processor bank is an especially attractive vehicle to allocate capacity on the basis of time or availability

since its computing cycIes are obtained from workstations that otherwise a e unused. We will present a design of a
system that brings the power of the processor bank to users for support of their Iequests for partitions. In addition,
we will show a peIformance profile that comes from an implementation of a system that allocates partitions to serve
background jobs.

consume a lot of capacity than by interactive or short jobs. Users receive greater benefit by distributing the load of I

1.13. Long Term Scheduling
The facility for sharing the capacity of a processor bank among its users is called long term scheduling. Long

term scheduling allocates capacity, on the basis of time and availability, to serve reservation requests and
background jobs. A long term scheduler, which implements long term scheduling policies, minimizes the wait while
idle condition by collecting information about available capacity, waiting jobs, and reservations, and by allocating
partitions for background jobs and reservations.

Long term scheduling is one of the three levels of scheduling in a processor bank. To clarify the
responsibilities of long term scheduling, we show how it relates to the two other levels: short and middle tern
scheduling.

The short term scheduler allocates the resources of a machine to processes in its ~ u n queue. The processes are
scheduled by the short term scheduler so that they frequently receive short busts of capacity. A higher level of
scheduling is conducted by the middle term scheduler. It decides when and where within a par tition of woIkstations
to place or move jobs. A middle term scheduler distributes jobs within a partition to keep machines in a partition
busy or to balance the load of machines in a partition.

Long term schedulers allocate machines from the processor bank to workstation owners to form a partition.
Since we assume that each workstation has a single owner, one might classify a long term scheduler as one that
a b a t e s available machines to a home workstation. This is contrasted with short term schedulers which allocate
processes to their local machine's resources and middle term schedulers which allocate processes to remote
machines' resources.

In this thesis we focus on long term scheduling for a processor bank. It is a problem that has not been
addressed by others, whereas short term scheduling [Kleiwock75, Kleinxock761 and middle term scheduling
Eager86, Krueger88, Livny82, Stankovic84, Stumm88, Wang851 has been studied extensively.

When an owner of a workstation withdraws her station from the processor bank, the long term scheduler stops
the foreign computations on the station and causes them to leave the station. A computation isforeign to station if it

4

is conducted by a user who does not own the station on which the computation is executing, or is a background job
submitted to the processor bank for execution. Part of the duties of a long term scheduler is to save the processing
state of a foreign computation in case the computation is preempted or when the machine on which it runs fails. A
processing state of a computation is the information necessary to resume on a different machine a computation in
pIogress. It is the responsibility of long term scheduling to minimize the work that must be redone when a foreign
computation is preempted or a remote location fails. This is accomplished by restarting the computation fiom a
saved processing state.

Both short and middle term schedulers do not save the processing state of a computation in order to handle a
preemption of a machine in a partition or a machine failure. A short term scheduler handles CPU preemptions for
jobs in its run queue, but if the CPU fails or the workstation is withdrawn from the processor bank, a short term
scheduler loses the jobs. This is because it does not save their intermediate states in non-volatile storage. A middle
term scheduler might have facilities to move executing jobs within a partition, but if a machine in the partition is
taken away from a user by the long term scheduler, the middle term scheduler does not save the intermediate states
of the jobs it manages. A long term scheduler recovers a job even when there is no location to put it for execution,
because it keeps an intermediate state of a job in non-volatile storage.

1.1.4. Design and Evaluation Issues for a Long Term Scheduler
Several design issues must be explored when constructing a long term scheduler. One issue concerns the

stmcture of the scheduling system. This issue requires a decision to be made about the distribution of
responsibilities in the cluster of workstations. The structure has an effect on the amount of interference that the
scheduling functions have on workstations in the system. A second set of issues concerns protection, which arise
when users are given access to woIkstations owned by other users. Protection issues are important, whether they are
concerned with the possible attacks that foreign users might have on the workstations that they have temporarily
acquired by means of the long term scheduler, or the protection of the long term scheduler itself. We do not address
the complex protection issues, which is a large topic in itself. A third issue is the amount of transparency viewed by
users when they execute jobs remotely at the processor bank. The transparency issue is concerned with how users
acquire resources of the processor bank. Do users explicitly name which available machines they acquire for their
partitions, or is the allocation of partitions transparent to them?

The design of a long term scheduling system includes the choice of algorithms for allocating capacity to users
on the basis of availability. The algorithm decides which users are allocated capacity of the processor bank, and
which users must wait to receive allocations. In order for the algorithm to be evaluated, performance criteria have
to be chosen to quantify the quality of service provided. The choice of such criteria is affected by the quality of
service wanted by users. Goad service for some people might simply mean that jobs will eventually receive service,
or that the variation of waiting time of jobs is small Francez861. For others, the quality of service is measured with
respect to the amount of waiting each user (not job) has endured in order to receive requested resources. The
quality of service that users receive from the processor bank should be based on their demands for capacity from the
processor bank. A light user will be encouraged to contribute his workstation to the processor bank if he knows that
his requests receive a good quality of service fIom the bank. A heavy user does not object to giving higher priority
to a light user if it encourages the light user to add his machine to the system. A greater the number of machines in
the processor bank means that heavy users will have more capacity for the eventual consumption of heavy users. In
our study, we use the amount of capacity users receive, and the waiting time they suffer to receive capacity as the
basis of our performance criteria. This criteria means we cannot look only at the response time of jobs without
considering who owns them. We believe that the amount of remote execution time an owner of a workstation
received divided by his wait time, which is the remole cycle wait ratio, is a good criterion when evaluating
algorithms that allocate capacity on the basis of availability. The remote execution time is defined as the total
iemote processing time allocated to a woIkstation owner. The wait time is the amount of time the workstation
owner wanted remote cycles but had no cycles allocated. We will present an evaluation of three capacity allocation
algorithms of a long term scheduler using this criterion. Through observation of an implemented system, we show
how an algorithm that performs well with this criterion, called the IJp-Down algorithm, affects the users' wait
ratios.

In addition to the allocation of partitions on the basis of availability, another issue is the choice of an
algorithm to allocate partitions on the basis of time. To provide good service to users who reserve capacity, each
user should have an opportunity to reserve capacity. The heavy users who frequently reserve capacity should not

i

5

inhibit access to capacity by light users. With this goal in mind, we designed an algorithm to allocate capacity on
the basis of time, called the free-market algorithm.

This thesis will present an investigation of the structure of the scheduling system, design of algorithms for
allocating capacity, and the evaluation of an algorithm for allocating capacity on the basis of availability. The
smcture of the system enables users to transparently receive partitions on the basis of availability, and both
transparently and non-transparently receive partitions on the basis of time. We need a profile of reservation requests
of users to obtain an appropriate workload for an evaluation of algorithms that reserve partitions of a processor
bank. We would like to obtain this information by observing the patterns of reservation requests from a reservation
system, which we leave for future study.

1.2. Thesis Structure
The remainder of this chapter introduces four areas of research which address issues involved in the formation

of a processor bank and the shaxing of its capacity. These areas are presented in detail in chapters 3-6 of the thesis.
The first area of research explores the feasibility of using donated workstations to form a processor bank for

allocating partitions where background jobs are executed. Kleinrock IJUeinrock851 noted that the number of MIPS
(Millions of Instructions Per Second) from installed workstations is an order of magnitude greater than the number
of MIPS from mainframes. Although it had not been shown, he stated his belief that the capacity from private
workstations is left unused most of the time. It is important to learn how to use this untapped power. To evaluate
approaches of capacity sharing, we need to understand the characteristics of workstation usage. Therefore, we must
properly profile the workload of workstation activity. Chapter 3 of this thesis explores the patterns of activity
owners have with thek workstations, and characterizes the extent which capacity can be donated to the processor
bank. A model of the workstation utilization is developed as a stochastic process so that others can use realistic
workloads when evaluating capacity sharing policies.

The second area of research is the design of a long term scheduling structure and algorithms for allocating the
capacity of a processor bank on the basis of availability. Design issues involved in the structure of a long term
scheduling system, and the design and evaluation of algorithms to allocate available capacity on the basis of
availability are discussed in Chapter 4.

The investigation of the performance of an implementation of a long term scheduling system is the third area
of research. Chapter 5 portrays the performance profile of the system and the enhancements the system brings to the
computing environment. It shows the costs involved in sharing the processor bank and the support required to
execute jobs at the bank.

Since the amount of capacity in the processor bank is dynamic, the reservation of capacity can be a problem.
We are faced with the following interesting questions: Are partitions of the processor bank available often enough
and for long periods so that they could be reserved in advance? Can we predice the amount of reservable capacity in
a processor bank? For the fourth area of research, Chapter 6 shows that the amount of capacity in a processor bank
for particular times of a day can be predicted. This leads to our presentation of a design of a reservation system for
a processor bank.

Chapter 7 gives conclusions and presents future directions for research. The next step in the presentation of
this thesis is to provide background for our study. Chapter 2 gives an overview of work that relates to the sharing of
a processor bank constructed from a cluster of workstations.

i
1
i

i

CHAPTER 2

Related Work

In this chapter, work related to the problem of forming a processor bank from a cluster of workstations and
sharing its resources is presented We present three areas where similar issues have been studied. First, we discuss
several distributed systems that have features which resemble a processor bank. Second, resource sharing strategies
are presented which are directed toward providing a good quality of service for users in spite of their diverging
individual demands, which are similar to our long term scheduling policy. Workload characterizations of jobs (not
activity of workstation users) that show non-exponential behaviors is the third area presented.

The first area includes implementations of remote execution facilities for clusters of workstations and a
system that allows partitions of computers to be reserved. We begin the discussion with a look at a system that
originated the concept of a processor bank.

2.1. Related Distributed Systems
The concept of a processor bank was introduced with the development of the Cambridge Distributed system

pk~dham82, Craft831. The processor bank of the Cambridge system is a group of interconnected processors with
no owners. A cluster of personal computers are used to access the processor bank. The processors in the bank
appear as cycle servers to users when they receive allocations. The system manages the resources of the
heterogeneous facility and helps users acquire needed hardware and software components. Users manually place
and schedule their jobs on the allocated resources.

Following the implementation of the Cambridge Distributed system, researchers at the University of
Wisconsin developed the Crystal Multicomputer DeWitt871 which has management features resembling long term
scheduling. The Crystal Multicomputer is a loosely-coupled partitionable multicomputer with a static number of
computing nodes at its disposal. It seIves as a test bed for experimentation in distributed computing. Crystal has the
ability to schedule reservations for users on a partition of computers. A user acquires a partition to conduct
experiments without interference from users of other partitions. The reservation feature is the basis for our study of
reserving partitions of a dynamic processor bank formed fram workstations.

A powerful feature of the Crystal Multicomputer is its remote system call facility for a Unix@ environment
(Pitchie781, called remote unix (RU). RU allows available Crystal nodes to be servers of remote computing cycles
for Unix program. It serves as the basis of a facility that was implemented by Litzkow [14itzkow87bl to turn
available workstations into cycle servers. Included in the facility is the ability to checkpoint jobs. A checkpoint is
an intermediate state of a job that has already begun execution. The intermediate state of the job has enough
information to restart the job on a different machine at a later time. The topic of checkpointing has been confronted
both in implementations and in theoretical studies by several researchers. Work by [Borg83, Powell83bl used
checkpointing in the implementation of systems to allow job recoveries from failures. Chandy and Lamport
[Chandy85b] presented an algorithm for taking a checkpoint of a distributed computation, where each process in the
computation takes a checkpoint of its own state and records the messages that it sends and receives after the
checkpoint. Papers by several researchers [Chandy’lJ, Chandy85a7 Gelenbe85, Gelenbe79, Krishna83, Young741
have studied the optimal period in which to checkpoint jobs, which is typically optimized for the mean response
time.

The Cambridge Distributed system and the Crystal Multicomputer are examples of implementations of
loosely-coupled systems which have a resource manager that allocates partitions of publicly owned processors to
users. Many loosely-coupled systems have developed transparent process placement facilities and process
migration facilities to improve their utilization [Artsy86, Lazowska81, Popek81, Powell83a, Walker83]. With the

@ Unix is a trademark of AT&T Bell Laboratories.

6

growth of computing environments composed of private workstations, researchers have implemented facilities
aimed at improving their utilization. The emphasis has been directed towards the implementation of systems that
support remote executions and allow jobs to migrate to available workstations, without addressing the problem of
long term scheduling. These include the NEST research project [Agrawal85], the V-Kernel [Chenton83,
Theimer851, the Sprite System IDouglis87, Ousterhout881, and the Butler System INichois87, Dannenberg8fil.
With the exception of the Butler system, the systems do not view workstations as private resources with owners.
The Nest, V-Kernel, and Sprite systems view clusters of private workstations as loosely-coupled multicomputers.
This means that foreign jobs can interfere with a user’s local activity on his workstation.

The remote execution facilities of the NEST, V-Kernel, Sprite, and the Butler systems allow programs to be
off-loaded on available workstations. This increases the computational resources available to a user to be beyond
what is provided by his personal workstation. The NEST research project is concerned with creating a computing
environment that consists of a cluster of highly autonomous yet cooperating personal computer workstations and
shared servers. The paper which describes the NEST project discusses the implementation of an augmentation to the
Unix environment where process location can be transparent.

Primarily due to the complexities in the Unix system, the migmtion of executing processes is not studied in
the NEST project. Process migration implementations appear in the V-Kernel and Sprite systems. The V-Kernel
allows the migration of a process to be overlapped with its execution. While a process’s address space is being
moved, the process continues to execute. Pages of the address space that have been modified after they were
previously moved would need be moved again. When the operating system is ready to commit the process to the
new location, the process is suspended and all remaining address pages are moved. The migrating technique differs
in the Sprite system, where a process is suspended during the entire time it is being migrated

The NEST, V-Kernel, and Sprite systems do not form a processor bank from a cluster of WoIkstations, and
manage the allocation of the capacity of a processor bank. The system that most closely resembles an
implementation of long term scheduling for a processor bank is the Butler system. By means of the Butler system,
users acquire workstations from an available pool to execute their jobs remotely. The Butler system provides a
shared file system and a network window manager that can display windows of remotely executing programs. A
program called the butler manages the pool of available workstations. The login facility is used to identify
workstations in the pool. By observing whether a user is logged into a workstation, the Butler system registers a
workstation as being available for remote execution or busy with local activity.

The Butler system provides users with transparent access to remote capacity, but it does not allocate capacity
to users on the basis of availability. A user with many background jobs explicitly requests remote machines, rather
than queuing jobs for later execution when capacity becomes available. An intermediate state of a remotely
executing job is not saved when preemption occurs at the remote site at which the job is executing. The remotely
executing job is lost, with the work that it has performed.

The NEST, V-Kernel, Sprite, and Butler systems present important developments regarding sharing the
resources of clusters of workstations. With the exception of the Butler system, they view a cluster of workstations
as a loosely-coupled multicomputer, which sharply differs from our view that owners of private workstations should
suffer little interference from foreign users.

2.2. Scheduling Remote Capacity For Users
Most schedulers concentrate on the response time or response ratio of individual jobs without considering

which users submitted the jobs. When the quality of service is based on the response times of jobs, users who
submit the greater number of jobs in a steady stream are given a better quality of service. Work aimed at studying
the quality of service the users obtain when they present varying demands to a system appears in papers by Kay and
Lauder By881 and Klingner Ifllingner8 13.

Kay and Lauder describe the implementation of the Share scheduler [Kay88]. It is used to schedule jobs for a
Unix based multiuser computer. Shares are allocated to users to represent their priority to computing capacity.
Users receive resources according to the shares they possess. When users consume computing capacity, shares are
taken away. The number of shaes allocated to users is detexmined by a system administrator. The rate of
consumption of shares is a function of current and past resource usage.

I

8

This scheme relates to remote capacity allocation strategies we explore. However, the fair share scheduler
operates on a multiuser computer, and does not have a dynamic processor bank to manage. The fair share scheduler
does not need to deal with issues of how to distribute scheduling responsibilities as required for a processor bank. It
does not manage resources owned by individual users who require little interference from foreign jobs.

A system that manages users’ access to several machines is the FOCUS scheduling system Wingner811.
FOCUS gives users the view of several CRAY machines as a single production resource at the Los Alamos
Computing Center. The computing resource is shared among major divisions of the laboratory according to the
director’s allocations. It allows an organization to have control over which jobs are m within the organization’s
allocation. Each organization is allocated a percentage of the total computing resource. FOCIJS schedules jobs
with the goal that each organization receives the same percentage of total throughput from the processors as their
predefined allocations. One problem with this approach is that it may be impossible to achieve the intended result if
the resowe requirements of each organization differs significantly from their allocation. Those organization with
large allocation may not have the demands that make it possible to achieve their prescribed percentage of processor
utilization. Other organizations with smaller allocations but with larger demands may be forced to stifle their
demands in order for the CPU utilizations to match the allocations.

Part of the duties of a long term scheduler is to allocate reservations to users. In our study of a reservation
system for a processor bank, we introduce an economic model for allocating reservations. We are not the first to
consider such an approach to study computer resource management problems. For example, an economic model
has been used by Kurase, Schwartz, and Yemini lKurose85l for maximizing multiple access channel protocols of a
communication network. A similar one by Ferguson, Yemini, and Nikolaou [Ferguson88] studies middle term
sharing algorithms in a distributed system. In their systems, a competitive pricing scheme determines a device’s
privilege for accessing either a computing or a communication resource. We will propose a different type of
economic scheme for deciding how to allocate reservation capacity.

23. Recent Workload Characterizations
In the next chapter we will show a characteIization of the availability of capacity at a processor bank. This

characterization differs from an assumption of exponential distribution, which is often used when representing a
workload for performance evaluation studies. A number of researchers have observed that the CPlJ requirements of
jobs on multiuser computers are not exponential. However, these studies profiled processes and not users’ activities.
One example is of Leland and Ott IIAeland86] who presented a study from the observation of 9.5 million Unix
processes and showed that the probability distribution of CPU time used is far from exponential. The distribution of
CPU capacity used by processes was approximately l-rx-, where 1.05 c c < 1.25. Another example is presented
by Zhou IZhou871 who traced Unix processes on a VAX 11/780@ computer. The trace included the arrival patterns
and CPU demands of the jobs. The arrival and CPU demands were observed to have a large coefficient of variation.

Much of the study of long teIm scheduling for a processor bank is a new research area. This thesis provides
new insights to the exploration of this area. The presentation in the next chapter looks at the characterization of
workstation usage pattems, and demonstrates the feasibility of using their available capacity in the formation of a
processor bank.

-_-
UI VAX is a registered trademark of Digital Equipment Corporation.

CHAPTER 3

Workstation Usage Profile

3.1. Introduction
A processor bank is valuable if its users have access to Iarge amounts of capacity for long intervals. The

amount of capacity depends on the utilization of workstations by their owners, and the willingness of users to donate
their workstations’ resources. If a workstation is donated to the processor bank only when it has no local activity,
the impact on the local activity of a workstation owner is minimized. Since the impact is minimized, owners are
more willing to donate their workstations. We show that the processor bank will contain large amounts of capacity
even if donations occur only during intervals that owners do not use their workstations locally. This result is
obtained by profiling the usage patterns of a group of workstations.

To obtain a workstation usage profile, we monitored several stations at our deparunent for a period of 5
months. The information obtained by monitoring the stations provided insight on how workstations are used, and
how much capacity is available. We profiled the distribution of workstations’ available and non-available intervals,
and characterized the correlation between available and non-available intervals. We looked at how the availability
on a station changes from hour to hour, day to day, and month to month.

Our study goes beyond understanding the amount of capacity available in the processor bank by examining
the patterns of workstation activity in detail. Based on the analysis of the patterns of workstation activity, a model
of the utilization of workstations as a stochastic process is developed. This model enables others to use realistic
workload models when evaluating resource sharing policies for clusters of workstations. It is important to develop
realistic workload models since a major component of any performance study is the workload used. No system
evaluation study can avoid confronting the problem of modeling a workload Ferrari721. If inappropriate workload
models are chosen when studying scheduling policies, then inappropriate results can occur. Also, when usage
patterns are understood, algorithms can be designed that take advantage of those patterns.

In section 3.2 we describe the technique used for acquiring data about workstation usage. An analysis of this
data is presented in sections 3.3 and 3.4. Section 3.3 describes the amount of available capacity and how it varies
from hour to hour, day to day, and month to month. The distributions of workstations’ available and non-available
intervals, and a characterization of their correlation are presented in section 3.4. A summary of the results regarding
the workstation usage is given in section 3.5.

3.2. Technique Of Acquiring Data
We have monitored the usage patterns of 11 DEC VAXstationII workstations running under Bexkeley Unix

4.2BSD over a period of five months from the first of September, 1986 to the end of the following January. The
stations observed were owned by a variety of users. They wexe 6 workstations owned by faculty, 3 by systems
programmers, and 2 by graduate students. Two additional stations used by systems programmers that were only
available for monitoring from September through November have their traces included in the iesults reported.

We have obtained the profile of available and non-available periods of each of the workstations. An
unavailable period, NA, occurs when a workstation is being used, or was recently used by its owner so that the
average user cpu usage is above a threshold (one-fourth of one percent [Litzkow87al) or was above the threshold
within the previous 5 minutes. The average cpu usage follows the method the Unix operating system uses for the
calculation of user load in a similar way as the ps(1) wnixl command (process status) computes the cpu utilization
of user processes &itzkow87bJ. This load is a decaying average that includes only the user processes, and not the
system processes. Activities resulting from programs such as time of day clocks or graphical representations of
system load do not generate user loads that arise above the threshold. An available period, AV, occurs whenever a
workstation’s state is not NA.

9

10

The workstation usage patterns were obtained by having a monitoring program executing on each
workstation. The monitor on each station executes as a system job and does not affect the user load. The monitor on
each woIkstation looks at the user's load every minute when the workstation is in the NA state. If the user's load is
below the low threshold for at least 5 minutes, the workstation's state becomes AV. During this time the
workstation's monitor will have its "screen saver" enabled. The monitor looks at the user's load every 30 seconds
when the workstation is in the AV state. Any user activity, even a single stroke at the keyboard or mouse, will cause
the "screen saver" to be disabled and all user windows on the workstation's screen to be redrawn. This activity
brings the user load above the threshold, and causes the state to become AV. If no further activity occurs,
approximately seven minutes pass before the station's state changes to AV. This is because it takes the user load
average 2-3 minutes to drop below the threshold, and an imposed waiting time of 5 minutes. The waiting period is
imposed so the users who stop working only temporarily are not disturbed by the "screen saver" reappearing as soon
as they are ready to type another command. The waiting time is adjustable, but it has been observed that it is a good
value to choose without causing an annoyance to users [Litzkow87a]. "his conservatively decides whether a station
should be a target for remote cycles. Stations are idle much more than what appears in the AV state. The user load
with the imposed waiting time is used as a means of detecting availability because the station should not be
considered a source of remote cycles if an owner is merely doing some work, thinking for a minute, and then doing
some more work. Otherwise a station would be a source of remote cycles as soon as the owner stopped
momentarily. The workstation's owner would suffer from the effect of swapping in and out of her processes, and
the starting and stopping activities of the remote processes.

The monitor keeps records of the workstation's last 100 state changes. Every ten hours, one of the
workstations gathers the records from all other workstations and maintains a log for the entire workstation cluster.
When records aie gathered from a Workstation, the user load is not affected. This is because the monitor on the
workstation which sends the records executes as a system job. Because less than 9 state changes would occur
within an hour because NA states last at least 7 minutes, we will not lose records due to our sampling rate. Some
record were lost because a few stations had their monitors disabled for a short while, and then enabled later. This
happened rarely and has little significance on our traces. During inteIvals when station monitors were disabled, the
time was marked as an NA interval.

33. Monthly And Daily Variation Of Availability Of Workstations
This section reports the amount of available capacity in the Observed cluster of workstations. The amount of

available capacity was large over the observed period, and varied little from month to month. There was variation
on a daily basis, and from station to station.

The average amount of available capacity was moxe that 70% for the observed time. Table 3.1 shows the
percentage of time each station was available for remote cycles from month to month. The row labeled as system
gives the system availability of cycles. Notice how the system availability remained steady in the range 69-74'31.
This means that there was a large steady amount of available cycles. The column and row labeled "COV" represent
the coefficient of variation, which is the standard deviation of the availability divided by the average. The
coefficient of variation was computed for each station and for each month. There was a small variation in most
cases. Overall, the stations' availability was stable. Figure 3.1 graphically shows how some individual stations
varied their availability, while the system availability remained steady. We emphasize that the actual idle time of
the woxkstations was much larger than the available time reported. Ow available time value was conservative. Any
user activity causes a workstation to be unavailable for at least seven minutes. If the seven minute interval for each
busy period did not wcur, the system availability would increase approximately 4%. Therefore, if we were less
consewative, there would have been greater observed availability.

The availability of remote cycles varied during the course of a day. It varied during the work week and the
weekend. It is assumed that there would be a lot of available capacities during the evenings, and on the weekends
when most people were not working. One might wonder if there was large available capacity during normal
working times. Figure 3.2 shows how the availability of remote cycles varied during the week from Monday
through Friday between 8am and 5pm (8-17 hour). It shows how some individual stations' availability changed
during the day. Ea~ly in the morning the system availability was large, and then dropped to about 50% between 2-4
in the afternoon (14-16 hour). Even at the busiest time of the day thexe was a large amount of capacity to use.
Figure 3.3 shows the system availability of capacity on the weekends between midnight and llpm (0-23 hour). It

11

September
Machine

Name .
Station I
Station 2
Station 3
Station 4
Station 5
Station 6
Station 7
Station 8
Station 9
Station 10
Station 11
Station 12
Station 13-
System
cov

October
89
86
73
87
21
78
67
85
79
82
81
3

80
70

----...--
.-.- .-.-

0.4
-I

80
89
28
84
0

81
27
72
88
89
84
96
86
70 ---..-...
0.4

--
s Monitored.
November

81
91
26
85
45
74
87
70
83
82
86
17
75
69

-...-. .-
-..-..._.-

.- 0.4

-..--
!ercent of Ti
.- December

88
94
63
86
45
63
57
70
85
80
81

74 ----
0.2 .--

e In Avail
Jannary-

84
90
67
81
32
69
91
47
80
78
86

- ------..-
73
0.3 -.-

Table 3.1: Availability Of Stations From Month To Month.

loo 1

t I '\
\

\
a 501 \
g

j l
/

I \

,I--- System
Station 1 / . - --' - ___,__.__, Station 2

-. - .-- Station 3

\
\

I \
L '.-I .-_ _., ,J

30

7-- I - - - - ' F - - ' - - 7

Sept. Oct. N O ~ . Dec. Jar
Month

-

e

_I.----..--.....----.-....-

Figure 3.1.
Availability Of Remote Cycles (Month To Month)

ile State
Average

84
90
51
85
29
73
66
69
83
82
84
39
80
71
--

0.3 -..--

- cov
0.1
0.0
0.4
0.1
0.6
0.1
0.3
0.2
0.0
0.1
0.0

.-

confirms the intuition that there was a larger amount of capacity available at those times. The availability on
weekends was between 70-80%. The busiest time for the workstations on weekends is shown to be between 2pm
and 5pm (14-17 hour).

12

e \

/
I \ I

8 9 10 11 12 13 14 15 16 17
Hour

0 3 6 9 12 15 18 21 24
Hour

Figure 3 . 2 Availability of

(Mon-Fri, 8am-5pm)
Remote Cycles During Weekdays

Figure 3.3: Availability of
Remote Cycles During Weekends

(Sat-Sun)

A xemote capacity scheduler is likely to want to know on an hourly basis how individual stations are used. It
might wish to know the likelihood that a job placed at a station will be preempted in the next hour. Table 3.2 gives
a profile of the utilization of individual workstations over one hour intervals. A station's utilization of an hour is the
percentage of the hour the station was in the NA state. It shows that overall, 53% of all individual hours were NA
for less than 6 minutes (O-10% of the hour). Twenty-one percent of all hours were NA for more than 54 minutes
(90-100% of the hour). This information means that if each hour was observed individually, a station was likely to
be available for almost the entire 60 minutes, or was busy for the whole hour.

As in Table 3.1, the row labeled "COV" is the coefficient of variation. Across all the stations, the variation of
the utilization of the hours was small with the exception of the hours that were 10-20% and 90-100% utilized.
Although most stations were often busy for the entire hour if they were busy at all, the larger variation in the 90-
100% utilization occurred because some infrequently used stations such as stations 1 and 2 were rarely kept busy for
an entire hour at a time. The large variation in the 10.20% category occurred because some stations, such as station
3, automatically ran short programs periodically even when the owner was not at the console. These programs kept
the station unavailable for at least 7 minutes of an hour so that the utilization was 10-20%. Most stations do not
have these program, and therefore we observe a greater variation for this utilization category.

In addition to the utilization of individual stations, the utilization of the entire system is of interest to a remote
capacity scheduler. It would be beneficial to know the relative frequency distribution of the system utilization, SUl ,
of all intervals of length I . The system utilization during an interval is the average number of stations in the NA state
during the interval divided by the total number of stations. The SU, would help a scheduler estimate the fIaction of
the system capacity that is available for the next I minutes. Of special interest, the SU, would help a scheduler know
how likely all stations would be in the NA state simultaneously. Our analysis of the traces of the stations shows that
it was highly unlikely that all stations were in theNA state at the same time. The 11 stations that were monitored for
the entire measurement pexiod were examined. We observed that during the five months the system was monitored,
the longest period in which no station was available was 10 minutes. This means that from a practical point of view,

13

- - _ -

Machine
Name 40-

50
2
2
2
2
4
2
1
3
2
2
1
1
1

station 1
station 2
station 3
station 4
station 5
station 6
station 7
station 8
station 9
station 10
station 11
station 12
stations 13 ---

50-
60
2
2
2
2
3
2
1
3
2
2
1
1
1

-..-...-__

..--.-_3.._....--
Average
cov --

30
3
3
2
3
8
7
2
6
3
5
1
1
2

-
0-
10
72
72
8

73
10
46
59
41
69
59
67
55
58
53
-
-
0.4 -..---,.

40
3
3
2
2
5
4
1
5
2
3
1
1
1

-._-_-.-.-

-
10-

20
8
8
44
7
4
17
3

13
5
14
5
2
3

--

3 1 2 1 2 1 2 1 1
0.5 I 0.3 I 0.4 I 0.5 I 0.4

Percentage
20- I 30-

2 21 .
0.1 0.8

is Util
60-
70
2
2
2
2
3
4
1
4
1
2
2
1
1

-

--

ation gg-T
2
1
2
2
2
1
3
1
1
1
1

2
2
2
4
3
1
3
2
2
2
1

3
36
7

58
11
31
18
14
9
19
37

1 I 1 1 3 1

Table 3.2 Utilization Of Individual Stations For One Hour Periods.

there was always one or more stations available. The longest period that one would have to wait for 2 stations to
become available was 25 minutes. The longest period that one would have to wait for 3 stations to become
available was 2 hours.

Table 3.3 shows the relative frequency distribution of the system utilization for intervals lengths of 60
minutes, 30 minutes, 10 minutes. and 1 minute. Notice that the system utilization was less than 40% for almost 80%
of all hour intervals. This means that the probability that at least 6 stations were available is almost 80%. There
was never an hour where the average number of NA stations was greater than 9 stations.

Figure 3.4 shows how on an hourly basis the system utilization and individual station utilization compare.
The solid curve in the figure comes from data in Table 3.3 and the dashed line comes from data in Table 3.2.
Individual stations were likely to be AV or NA for entire hours, while the system was likely to have a total of 2-4
stations in the NA state. Because individual stations are likely to be either AV or NA for the entire hour, the
prediction of whether a station is available for an entire hour can be approximated by a Bernoulli distribution. We
can view the station as having a probability p that it is in the NA state, and 1-p that it is in the AV state. If we

10 ip< 20
20 sp< 30
30 <p< 40
40 Ip< 50
50 <p< 60
60 Ip< 70
70 Ip< 80
80 Ip< 90
90 <p<100 -

1.6
0.3
0.0

4.4

0.4
-_

.--

... El.
18.0
24.6
22.7
13.4
7.8
5.7
4.0
2.3
1.1
0.4 ----

,I

Table 3.3 Relative Frequency Distribution Of System Utilization, SU

14

r---i
I 1
, I
I 1
I 1
I t I 1

0 10 20 30 40 50 60 70 80 90 10(
Utilization

Figure 3.4: System And
Individual Station Utilization

P
e

e

o 30
f

H 20

10

0
u

s

0

Binomial
- - .. -- ., -. Bernoulli

I , I : !
L1 I 1 I

1 20 30 40 50 60 70’80 90 lo(
Utilization

Figure 3.5 Bernoulli and Binomial
Probability Density Functions

assume that the behavior of each station is independent, then the probability that k stations are in the NA state, n k ,
can be approximated by the binomial distributiop

The dashed line in Figure 3.5 is the BernoulliCdensity funchon for p = 0.3 and the solid line is the conesponding
binomial density function. This BemouIli density function with p = 0.3 is shown because the utilization of the
individual stations was more than 50% for approximately 30% of the hour intervals observed. Notice the similarity
of the shapes of the curves in Figures 3.4 and 3.5. This indicates that the stations can be viewed as independent and
the system utilization can be approximated by a binomial distribution.

Large availability of system capacity means that if a long running sequential job can be distributed, several
stations are likely to be available to serve it. Suppose a user has a job that would execute on a station for 5 hours.
Because it is very likely that more than 6 stations are available simultaneously for an hour interval, a version of the
long running job distributed into 6 or more processes is likely 10 be able to acquire enough available processing
cycles to complete within an hour.

3.4. Model of Workstation Usage Patterns
We want to represent the usage patterns of the workstations as a stochastic process so it can be used to model

availability a processor bank. Such a model can be used in performance evaluation studies of processor banks, or to
support design decisions of resource management algorithms that rake advantage of knowing the properties of the
usage pattern. A model improves the quality of the prediction of the amount of available remote capacity. With the
workload modeled as a stochastic process, we do not need to use traces to drive simulation models.

In order to define a stochastic process we have to know the distxibutions of AV and NA state lengths, and how
state lengths are correlated. The data gathered from each workstation was analyzed to determine the relative
frequency distributions of the AV and NA state lengths. Individuals stations were analyzed and the characteristics of
their distributions are reported. We show how the length of AV intervals was correlated to the length of subsequent

15

NA intervals, and vice versa.

3.4.1. Distribution Of Usage Patterns
A graph of the cumulative relative frequency of the AV states for all of the stations during the entire time

monitored is shown in Figure 3.8 (the solid line). For each time t on the horizontal axis, the corresponding
percentage on the vertical axis is the percentage of AV intervals that were less than t+l minutes. The figure shows
that there were many short AV intervals of less than a few minutes and many very long intervals of an hour or
longer. The solid line curve in Figure 3.9 shows the cumulative relative frequency of NA state lengths. As in Figure
3.8, for each time t on the horizontal axis of Figure 3.9, the corresponding percentage on the vertical axis was the
pexcentage of NA intervals less than t+l minutes.

When we look at Figures 3.8 and 3.9, we notice that there were many short intervals for both the AV and NA
graphs. This leads us to believe that a signi6cant component in the relative frequency was from shoxt intervals.
However, there were more long intexvals than what one would expect to see in an exponential distribution. The
graphs show that the percentage of intervals larger than one hour is greater for AV intervals than for NA intervals. In
Figure 3.8 we see that there was a large number of AV intervals beyond 5 hours long (300 minutes). This leads us to
the belief that the AV periods were dominated by three types of periods: short, medium, and long. For the NA
periods we have identified two types of periods: short and long. With this intuition, we seek to match a distribution
to each of the relative frequencies observed. Figures 3.8 and 3.9 appear to have exponential components because
they increase similarly to an exponential distribution and have long tails. A mixture distribution of exponentials
seems to be a good candidate to fit the observed data privedi821. This distribution is sometimes referred to as a k-
stage hyperexponential distributions, when the distribution has k components Kobayashi8 I]. The k-stage
hyperexponential distribution function of a random variable T is defined as

1001

C - Monitored Data
n ----- Fitted Distribution
t

g
e 30 "i 20

-
o i20 x u t : 6 o 480 600

Figure 3.8: Distxibution of AV
State Lengths of All Stations

P
e
r

e
n
t
a
g
e

C - Monitored Data 501i ----- Fitted Distribution

4011 30

2 0 ~ 10

0 120 240 360 480 60C
Minutes

I

Figure 3.9: Distribution Of NA
State Lengths Of All Stations

16

i =k i=k

i=l i =1
F (T) = X q F i (t) , where Fi(r)=l--e-Lr, and Xq=1. (3.1)

We look for a k-stage distribution that fits our monitored data well and has a small number of components. Each
component i of a k-stage distribution introduces two parameters that must be adjusted Xi and ai. On one hand, the
more components introduced the better the fit is, but on the other hand it is more complex to assign values to a large
number of parameters. It is important to capture the characteristics of a relative frequency distribution with as few
components as possible. For the AV relative frequency distribution, a good match was achieved by using a 3-stage
hyperexponential distribution. The stages represent the small, medium, and large AV intervals. The components
were assigned the expected values of 3,25, and 300 minutes. Short intervals occurred when users did some work,
and then stopped to think for a while before resuming the use of their workstations. Medium intervals were the
result of users leaving their desk for short intervals, or stopping to do other work during the day. Since users left
their offices in the evening and weekends, scheduled long meeting, and taught or attended classes, long available
intervals occurred. Weights were assigned by using a least-squares fit [James771 for these components to obtain the
following 3-stage distribution

-1 - -I -r
F (T~)=0.33(1-e '?)+0.44(1-e E}+0.24(1-e 300).

The small component contributes to 113 of the distribution. The larger components account for 2/3 of the
distribution of which a little less than 213 is the medium component, and the remainder is the largest component.

Figure 3.10 shows the march of the cumulative distribution to the monitored traces for AV intervals smaller
than 60 minutes. The curve derived analytically for Figure 3.10 was generated from equation 3.2. The distribution
of intervals that were less than 60 minutes is an important portion of the distribution to match. This is the region
where one must study to determine whether it is waIthwhile to use in forming a processor bank. Intervals that were
several hours long couId be broken into two intervals which are both longer than an hour and it would not greatly
affect any remote capacity allocation strategies. We see that the match is excellent between the two curves. Figure
3.8 shows the match for AV intervals that were up to 600 minutes in length. The overall difference between the
fitted distribution and the relative' frequency distribution is very small.

Less complexity is introduced when matching the NA intervals because its relative frequency distribution has
fewer long intervals. A good match for the NA intervals, TNA , is obtained if we use a 2-stage hyperexponential
distribution. The two components have the expected values of 7 and 55 minutes. The short component is the result
of frequent short activities. The user typed a few simple commands and then stopped to do something else. The
user might have had some jobs that executed for short intervals even when she was not at the station. These short
jobs contributed to the user load which briefly made the station unavailable. The long components are the result of
prolonged activity by the user. Long intervals occurred if the user had long running jobs to execute, which
continued to execute even when the user was away fiom the station. Since each NA interval lasted at least 7
minutes, the distribution is modified so that the probability that an interval is less than 7 minutes is zexo. The
distribution of NA intervals is defined as

-t -r

0.68(1--e -i-)+0.32(1-e z), if t 21
(T N A = 0, if ort <7. (3.3) [

Figure 3.1 1 shows the match between the cumulative distributions of TNA and the monitored relative frequency for
NA intervals less than 60 minutes. The curve derived analytically for Figure 3.11 is generated from equation 3.3.
The match in Figure 3.11 is very good. Figure 3.9 shows the match for NA intervals that were up to 600 minutes in
length.

Beyond the first five minutes, the greatest amount the fitted curve in Figure 3.8 deviates from the curve of the
monitored data at any point is approximately 2.5% from below and 1.0% from above the monitored data. For
Figure 3.9, the greatest the fitted curve deviates beyond the seven minute interval from the observed data is 1.0%
from below and 1.5% from above. By using the Kolmogorov-Smirnov test (KS test) for curve matching [KnuthSl],
we calculate the likeliness that our observed data could be generated from a random sequence of our fitted

17

20 -
10-

distribution. If random sequences were generated from the distribution of equation 3.2, it would have
approximately an 45% chance of deviating from below as much as our monitored data, and an 85% chance from
abve. Random sequences generated from a distribution like equation 3.3 would have approximately an 85% chance
of deviating from below, and an 80% chance from above as much as our observed data These ranges mean that
random sequences with distributions of equations 3.2 and 3.3 are likely to deviate as much as our monitored data
This gives added confidence in using equations 3.2 and 3.3 as matches for our observed data. We believe that
equations 3.2 and 3.3 can serve as means of artificially describing AV and NA interval characteristics for studies
involving remote allocation strategies of workstations in a processor bank.

Each individual workstation had its own usage patterns. The pattern of some stations varied greatly from the
others. Nevertheless, each workstation can be characterized by its own mixture distribution as defined,by equation
3.1. Each workstation had three components for its AV interval characteristics, and two components for its NA
intervals. A good fit was obtained for each station taken individually. Although the magnitude and contribution of
each component varied, each station had a AV short component with expected values that ranged from 3-5 minutes,
a medium component that ranged from 25-60 minutes, and a large component that ranged from 150-600 minutes.
All stations followed these characteristics except two, which were station 5 and station 12. Stations 5 and 12 were
available very little, and did not match well with these ranges. Station 12 had an unusual large number of short AV
and NA intervals. Without station 12, the overall relative frequency distributions would have fewer very short
intervals, but there would stil l be a three-component hyperexponential distribution that matched the AV and a two-
component distribution to match the NA intervals. The same exponential distributions would be used with only a
small difference in the weighting of each component. For the NA components, all other stations had short
components ranging from 7-11 minutes, and long components &om 45-95 minutes. The station's long NA
components were between 45-55 minutes.

P
e
r

e
n
t
a
g

C

e

I

I i

1° i
04--l--r- . 1

0 10 20 -30 40 50 60
Mrnutes

P
e
r

e
n
t
a
g
e

C

'0°1

0 10 20 30 40 50 60
Minutes

Figure 3.10 Distribution Of AV
State Lengths Of All Stations

Figure 3.11: Ilistribution OPNA
State Lengths O F All Stations

18

3.4.2. Correlation Of Available And Non-Available States
When we build an artificial workload generator, information beyond the distribution <f the states is needed.

Given that distributions that closely match the observed distributions of the two types of intervals can be generated,
we need to know how the length of AV and NA intervals correlate. What can the length of the current interval tell us
about the length of the next interval?

Pairs of NA and AV periods weIe analyzed to deteImine whether such a correlation exists. We looked at the
traces and labeled AV intervals as short, medium, or long samples. All samples that were less than 9 minutes were
labeled short samples. (Ninety-five percent of intervals of an exponential distribution with mean of 3 minutes are
less than 9 minutes.) Intervals greater than 9 minutes and less than 75 minutes (which is the 95 percentile of an
exponential of the medium distribution with mean 35 minutes) were called medium samples. The remaining
available AV samples were labeled large samples. We similarly class5ed NA samples less than 21 minutes (the 95
percentile of an exponential distribution with mean of 7 minutes) to be short samples, and the remaining samples
long.

With this labeling method, we show a conditional probability graph in Figure 3.12. It shows that 41% of all
AV samples were short, 36% were medium, and 23% were long. Equation 2 weighted the components as 32% short,
44% medium, and 24% long. Our labeling gave a greater peIcentage of sho1.t intervals than what appears in
equation 3.2. This was expected since some intervals from the medium and long components are less than 9
minutes in length and therefore counted as short. This is demonstrated in Figure 3.10 by the curve generated by the
distribution function of equation 3.2. About 41% of its intervals shown in Figure 3.10 are less than 9 minutes. Of
the NA samples, Figure 3.12 shows that 74% were short, and 26% were long.

We show how NA periods followed AV periods in Figure 3.12. The conditional probability distribution is
very close to the unconditional probability distribution. ShoIt, medium, and long AV periods followed NA intervals
in approximately the same propoItion that they occurred. From this graph there does not appear to be a correlation
between the length of the AV and NA peIiods. This observation was verified by computing the correlation
coefficient [Knuth81] of NA and AVperiods. It was a very small positive value.

Although the AV and NA intervals were uncorrelated, pairs of AV intervals, and pairs of NA intervals were
correlated. An AV pair is two AV periods that are separated by a single NA period. Likewise, an NA pair is two NA
periods that are separated by a single AV period. A correlation was expected because of Ihe way individuals use
their workstations. Users tend to have a cluster of shoIt idle periods, or a cluster of several long idle periods. Some

I I

I I
AVAILABLE I NOT-AVAILABLE I AVAILABLE

Figure 3.12.
Conditional Probability of AV, NA State Changes

users work on their workstations infrequently, so they have mostly long AV intervals separated by long or short NA
intervals. Figure 3.13 shows the conditional probability graph of AV pairs. Short AV intervals were more likely
(64%) to be followed by short AV intervals. Medium AV intexvals were more likely (52%) to be followed by
medium AV intervals. Similarly, long AV intervals were more likely (48%) to be followed by long AV intervals.
Furthermore, if a long interval was not followed by a long interval, then it was more likely to be followed by a
medium interval instead of a short interval. Short, medium, and long AV intervals were nearly twice as likely to
follow the corresponding short, medium, or long AV interval than any other kind of AV interval. A correlation also
existed for the NA intervals as shown in Figure 3.14. However, it was much less significant. Short NA intervals
followed short NA intervals only slightly more than they followed long NA intervals.

3.43. Development Of Stochastic Models
From the results we can define a family of models that describe the behavior of the users at different levels of

accuracy. A first approximation is a model where state times are independent random variables. In this model, the

AVAILABLE AVAILABLE

I
I

I
I

'AILABLE

20

state lengths are distributed exponentially. The expected value of the distribution is the mean of the observed AV
and NA state lengths.

A better model includes the observations that 3-stage and 2-stage hyperexponential distributions closely fit the
relative frequency distributions of the AV and NA state lengths. In this model the distribution of the state lengths of
the first approximation are replaced by the 3-stage and 2-stage hyperexponential distributions.

A more accurate model takes into account the correlation of the state lengths. This leads to our stochastic
model of workstation usage. The length of the next AV period depends on the length of the current AV period.
Likewise, the length of the next NA period depends on the length of the current NA period. In this model, the type
of next interval, whether it is small, medium, or large, is based on the conditional probabilities described in the
conditional probability diagrams of Figures 3.13 and 3.14. When the next interval’s type is known (small, medium,
or large), the next sample’s length is specified as a random sample from an exponential disaibution that is a
component of equations 3.2 or 3.3 that represent the sample’s type. For example, long AV samples are chosen from
an exponential distribution that has an expected value of 300 minutes.

Further accuracy can be introduced into the model by giving each workstation its own distributions and
correlations of state lengths. A workstation’s availability depended on the time of day, and the day of the week A
model which includes this information is more complex, and more precise. We plan to continue our study to
understand if further complexity is necessary in order to capture the characteristics of workstation availability.

3.5. Summary
From observing a cluster of workstations, we have shown that a processor bank has huge capacities to share.

The system availability was approximately 70% for the time observed. Although availability varied from station to
station, the variation of each station was typically small. The system availability was stable from month to month.
Not only during evenings and weekends was the availability large, but also during the busiest times of weekdays.
When stations were observed for hour intervals, they typically were available for mos‘t of the hour, or unavailable
for the entire hour.

We have presented the profile of the workload of a processor bank formed from workstations and a stochastic
model that matches this pmfile very closely. Since performance evaluation studies are critically dependent on the
workload processed by a system, the workload descxiption is especially important.

The model of workstation activity presented is based on the observed distributions of AV and NA intexvals,
and their correlation. An exponential distribution does not adequately represent the relative frequency distributions
of AV and NA state lengths. Observations pxesented in this chapter show that a 2-stage and 3-stage
hyperexponential distribution fit the relative frequency distribution extremely well. The components that
characterize the workstations’ AV intervals have expected values of 3, 35, and 300 minutes. NA intervals are
derived from short and long exponential distributions with expected values of 7 and 55 minutes. The length of AV
intervals was not correlated with the length of NA intervals, but the length of pairs of AV and pairs of NA intervals
were correlated. The stochastic model presented captured this correlation of interval lengths of the workstations.
Additional observations show that each workstation has its own distributions of AV and NA patterns. The
complexity of a stochastic model depends on the level of details of observed behavior included in the model. A
more complicated model would include these observations. However, the choice of a model should be one that
captures the characteristics of the observed behavior with the least amount of complexity.

This chapter has shown the amount of capacity that can potentially be shared through the processor bank. The
next chapter explores that design of a long term scheduling system that takes advantage of the capacity in the
processor bank.

CHAPTER 4

Sharing the Resources of a Processor Bank

4.1. Introduction
Given the large amount of capacity available in a workstation cluster, as shown in Chapter 3, the potential

amount of capacity that can be donated to the processor bank is huge. We present in this chapter a design of a long
term scheduling system to harness this potential. The design shows our approach of allocating capacity of a
processor bank to users.

The amount of capacity that users want from a processor bank differs greatly among individual users. We
observed that some users try to acquire as much capacity as they can for long periods, while other users want
capacity only occasionally. The diverging demands for capacity among users influences our design of a capacity
allocation algorithm. Our capacity allocation algorithm, called the Up-Down Algorithm, gives heavy users a large
amount of capacity while protecting the high quality of service of light users. The Up-Down algorithm maintains a
high quality of service for light users in spite of a large continuous demand for cycles by heavy users. In contrast to
the Up-Down algorithm, naive algorithms cause light users' quality of service to degrade. The Up-Down algorithm
trades off reward (remote capacity allocated) and penalty (waiting time suffered when a resource is wanted but
denied).

To evaluate the quality of service that allocation algorithms provide for users, we use the Remote Cycle Waif
Ratio criterion. The remote cycle wait ratio is the amount of remote execution time a workstation user receives
divided by his wait time. ?'he remote execution time of a workstation user is defined as the total remote processing
time allocated to the workstation user. The wait time is the amount of time the workstation user wanted remote
cycles but had no cycles allocated. This criterion guards against the domination of computing cycles by heavy
users. Algorithms that protect the high quality of service of light users will have a steady remote cycle wait ratio for
light users even though heavy users increase their demand of remote capacity. A decrease in the light users' remote
cycle wait ratio occurs for algorithms that do not protect light users' high quality of service.

Section 4.2 discusses the design issues of the system and the decisions made to resolve these issues. Part of
the design is the algorithm for allocating available capacity from the processor bank. A model of the system used to
study allocation algorithms is given in section 4.3. The performance of the Up-Down algorithm, used for allocating
the capacity of the processor bank, is presented in Section 4.4. Section 4.5 gives a summary of the design.

4.2. System Design
Within our department there are many users working on problems that need large amounts of computing

capacity. A few example problems include studies of load-balancing algorithms [Krueger88], simulation of real-
time scheduling algorithms [Chang85], studies of neural network learning models [Sandon87], and mathematical
combinatorid problems [Chavey86]. These jobs typically require several hours of CPU time and IittIe interaction
with their users. We designed our system to serve these users by executing their background jobs at available
woIkstations in a processor bank. In order to make our system attractive to these users, several issues must be
addressed. First, the placement of background jobs should be tiansparent to users. The system should be
mspnsible for knowing when workstations are available and users should not need to know where their remote jobs
execute. Second, if a remote site running a background job fails, the job should be restarted automatically at some
other location to guarantee job completion. Third, since an owner's workstation can serve as a source of remote
cycles for others when it is not used by its owner, the owner expects to receive fair access to cycles when he wants
remote capacity. Fourth, the mechanisms implementing the system are expected to consume very little capacity.
Otherwise users would not allow their workstations to be part of a system if it interferes with their local activity.

We will describe our remote job execution and recovery facilities, and the method of job scheduling. We
begin with a description of the structure of the scheduling system.

21

4.2.1. Scheduling Structure

22

The remote job scheduling structure s.mld be transparent to the user. When users have background jobs to
mn, they should not need to request the remote machines explicitly or know on which machines their jobs are
placed. A wide spectrum of scheduling structures could provide this objective. On one end of the spectrum, a
centralized, static coordinator would assign background jobs to execute at the processor bank. The cooxdinator
would gather system information in order to implement the long-term scheduling policy that the system
administrator has chosen. It would know which jobs were waiting and which were executing, and the location of
available stations. At the other end of the spectrum is a distributed approach. The assignment of available
processors is accomplished by each workstation cooperating to conduct a scheduling policy. This approach requires
negotiations among the workstations to resolve contentions for the available processors,

Both the centralized and the distributed approaches have well known advantages and disadvantages. The
centralized approach can efficiently decide which job is next granted processor bank capacity because each job
submitted is registered with the central coordinator. The central location knows both the number of available
workstations in the processor bank and the number of jobs demanding service. The important duties of this location
require that it is protected from users so that they do nor have direct access to it. Direct access compromises the
security of the scheduling policy. A system with a static central coordinator that keeps all jobs’ state and
workstation availability information is not easily extendible and is critically subject to failure. If the central
coordinator fails, all scheduling in the system would cease. In the distributed scheduling system, each requesting
workstation does its own searching for processor bank capacity. Message exchanges among contending
workstations would be required to place jobs at available workstations. This is less efficient than a centralized
scheme when deciding which job should be next allocated a processor. However, the distributed scheduling
approach is not subject to failure if a single station quits operating.

We have decided to follow an approach for structuring the background job scheduler that lies between a
centralized, static approach and the fully distributed approach. This approach uses the efficiency of scheduling with
a central node to avoid the overhead of messages to decide which workstations should be allocated available
capacity. The jobs’ state information is kept at individual workstations. Each workstation has the responsibility of
scheduling its own jobs. A workstation decides which jobs in its queue have the highest pIiority, The central
coordinator merely assigns capacity to wokstations which they use to schedule their own jobs.

Figure 4.1 illustrates our approach to structuring the system scheduling. On each workstation is a local
scheduler and a background job queue. The jobs that the user submits are placed in the background job queue. One
workstation holds the central coordinator in addition to a local scheduler and background job queue. In our
implementation which will have a performance profile presented in Chapter 5, every two minutes the central
coordinator polls the stations to see which stations are available to serve as sources for remote cycles, and which
stations have background jobs waiting. Between successive polls, each local scheduler monitors its station to see if
it is available to be donated to the processor bank. If a background job is running on the workstation, the local
scheduler checks every ?4 minute to see if the background job should be preempted because the local user has
resumed using the station. If a user has resumed using the station (the workstation is removed from the processor
bank), the local scheduler will immediately preempt the background job so that the user can have the workstation’s
capacity under his control. The central coordinator allocates capacity from available workstations to local
schedulers on workstations that have background jobs waiting. A local scheduler with more than one background
job waiting makes its own decision of which job should be executed next.

Our structure follows the principle that workstations are autonomous computing resources and they should be
managed by their own users. This also helps to keep the responsibilities of the coordinator simple. Simplicity is
important so that a central site is not required to maintain a great amount of information about each woxkstation.
This allows the system to be extendible to a large number of workstations and eases the required recovery when the
centralized coordinator fails. Local schedulers are not affected if a remote site discontinues service. If the site on
which the coordinator is executing fails, remotely executing jobs initiated and executing on olher machines are not
af€ected. Only the allocation of new capacity to xequesting users is affected. Since the coordinator has few duties,
its recovery at another site is simplified in relation to a fully centralized strategy. In order to balance the burden of
coordination, the central coordinator can be moved to other locations. However, we have observed that the
coordinator contributes less than 1% to the CPU consumption of a workstation so that there is probably little need to
move the coordinator.

23

.
1

Figure 4.1: The Scheduling Struchue.

In order to schedule jobs remotely, a remote execution facility is needed. Since our workstations operate
under the Berkeley BSD 4.3 Unix operating system, we decided to have a remote execution facility that is
compatible with our local job execution facility. This led to the development of the Remote Unix (RU) facility
[Litzkow87b]. The RU facility is implemented outside of the kernel of the Unix operating system. No
modifications are needed to the user program. A program executed by the RU facility must first be linked with a
library to handle the remote system calls.

4.2.2. The Remote Unix (RU) Facility
Remote Unix turns available workstations of a processor bank into cycle servers. When RTJ is explicitly

invoked, a shadow process runs locally as the surrogate of the process running on the remote machine. Any UniX
system calls of a program on the remote machine invokes a library routine which communicates with the shadow
process. A message indicating the type of system call is sent to the shadow process on the local machine.

The Remote Unix for workstations which was implemented by Litzkow Lzitzkow871 is based a system
implemented by Virgilio and Neuhengen for the Crystal [DeWitt87] Multicomputer. On the Crystal Multicomputer
system, jobs could be executed remotely on Crystal nodes. AlLsystem calls of the job would be executed by the
shadow on the host which sent the job to the Crystal node.

When someone resumes using a workstation that is executing a remote job, the job must be stopped. If the
state of the stopped job is not preserved, as is the case in the Butler system INichols871, all the work accomplished
by the job is lost. Because background jobs can require several hours of capacity, it is important that the system
restart background jobs without losing all the woxk previously accomplished. In our system, the intermediate state
from which background jobs can be restarted is made possible by a checkpointing feature of the RU facility.

4.2.3. Checkpointing
The RU facility checkpoints jobs when they are removed from remote locations. The checkpointing of a

piogram is the saving of the state of the program so that its execution can be restarted. The state of an RU program
is the text, data, bss, and the stack segments of the program, the registers, the status of open files, and any messages
sent by the program to its shadow for which a reply has not been received. In our system, we do not need to save

24

messages since checkpointing is deferred until the shadow's reply has been received. The text of the program
contains the executable code, the data segment contains the initialized variables of the program, and the bss segment
holds the uninitialized variables. Because it is assumed that there is no self-modifying code in the program, the text
segment remains unchanged during the execution of the program. Therefore the text segment is expected not to be
essential in a checkpoint file. However, programs can execute for a very long time, perhaps months. A user might
want to modify a program that has its executable file running as an RU job. For this reason, we save the text
segment. Otherwise, the user would have to make sure that the new program's executable file is given a new name
when thexe is an old version running.

An important component of the checkpointing facility is how it manages files used by a job. As with all
system calls, interactions with files are handled by the shadow process. The shadow maintains information of the
name, descriptor, position, and flags of all open files. When a job is restarted from the checkpoint, the state of the
files can be restored as they were at the time of the checkpoint.

The checkpointing feature for the system is an evolution of a checkpointing feature that we implemented for
the remote system call facility of the Crystal Multicomputer. Our implementation allowed two different ways to
trigger the saving of a checkpoint. It could be triggered external by sending a "checkpoint" signal to the Iemote site,
or internally by the expiration of a checkpoint timer. The value of the checkpoint timer could be set as a command
line argument when the job was submitted to the system.

43. Allocation of Capacity of the Processor Bank
We want to evaluate methods that the coordinator uses to allocate processor bank capacity to workstation

users. We need to model our long term scheduling system in order to study its behavior and evaluate its
performance. Ow model for the study of long term scheduling algorithms consists of a processor bank formed from
a cluster of workstations. Table 4.1 shows the parameters of the model. The number of workstations is designated
by NumWorkstations. Workstations will either be in the AV, or NA state. These states are determined by the
workstation workload pattern obtained by the traces as discussed in Chapter 3. If the workstation's state is AV, it
can be executing a background job or waiting to receive a background job for execution.

The background jobs of station i have exponentially distributed service times with mean servemean(i). We
model two different types of background job arrival pattens. One type is where jobs arrive according to a Poisson
process to station i with interarrival mean arrive(i}. This arrival pattern represents light users. The other type of
loading pattern models heavy users. A heavily loaded workstation will have a permanent number of jobs it wants
executed. The number of permanent jobs of station i is NumPennanent(i}. When a job of a heavy user completes,
another job will immediately appear.

The cluster of workstations has a scheduling coordinator to assign remote cycles to workstations. It
determines which workstations request remote cycles and which is willing to supply remote cycles. The coordinator
resolves contention. When remotely executed jobs complete, the coordinator will check to see if other woxkstations

-..--.-...--

NumPermanent(i)

Schednterval
JobTransferCost

-_-..-..--- .---.-.-. __-
-.- Meaning

Exponentially distributed mean
service time at workstation i

Exponentially distributed mean
interarrival time of jobs at workstation i

Number of jobs workstation i permanently
wishes to execute

Periodic scheduling interval for the coordinator
Time it takes to checkpoint a job and

move it remotelv

i

I NumWorkstations 1 Number of workstakons simulated ----
Table 4.1: Simulation Parameters.

25

want the newly available processor, and decide which will receive it. Any time a workstation’s state becomes AV, it
can be considered a target for a Iemotely placed job. The cooIdinator checks periodically if any workstation
requests resources even if no job has terminated recently. The length of this period is determined by the parameter
Schedlnterval.

Whenever the coordinator decides to move a job, or a user starts working at a workstation with a remote job
executing on it, the background job must be checkpointed and moved. This cost of checkpointing a job and moving
it to another location is modeled by JobTransferCost.

4.4. Scheduling Remote Processing Cycles
There is a diffeIence in usage patterns aniong users. We have observed heavy users that want to consume as

many processing cycles as they are able. Meanwhile, we observed light users that only wish to use remote cycles
occasionally. Without maintaining a proportion of the cycles allocated to the waiting time suffered, the remote
cycle wait ratio of a light user can be severely harmed by a heavy user, whereas the opposite is much less likely.
The remote cycle wait ratio is the Iemote execute time to wait time ratio of a workstation. The execute time is the
amount of remote cycles allocated to a workstation and the wait time is the amount of time a workstation needed but
was not allocated any remote cycles. An dgorithm that is concerned with the remote cycle wait ratio is taking past
history into account when making remote cycle allocations.

As an example of what occurs when past history is not taken into account, suppose we have a algorithm that
approximates processor sharing scheduling with a system of one remote processor to be shared by two workstations.
Suppose each workstation’s state is in the AV state 50% of the time. The remote processor is scheduled using
processor sharing. The local workstations would only be used as extra remote capacity if their state is AV and the
workstation had no local background jobs to run. Suppose User I has two background jobs ready to execute all the
time. User I1 has one background job ready to execute all the time. User I1 would use its local workstation for its
background job 50% the time and the remaining time it would be forced to share the remote processor with User I.
User I would use its local workstation whenever it was available, and it would request use of the remote processor
all the time. User I would have no contention for the remote processor’s cycles 50% the time and share it the
remaining time. The remote cycle wait ratio for User I would be 3 since 75% of the time the heavy user would
receive all the computing capacity of the remote processor, and 25% of the time User I would wait without being
allocated remote capacity. User II would be allocated 25% of the remote cycles, and would have to wait 25% of the
time to receive those cycles without any allocation given. Its remote cycle wait ratio is 1. In this example, we see
that processor sharing causes User I1 to wait 3 times more for each cycle allocated than User I. User I1 is also
allocated less execute time in proportion to what is given to User I. User I1 would like to receive 50% of the Iemote
processor’s cycles, but it only receives 25%. User I would like to receive 100% of the remote pIocessor’s cycles, but
receives 75%. User 11 receives 50% of the remote processor’s cycles it requested while User I receives 75% of its
request.

We consider past history when allocating remote cycles to provide efficient and fair access for users with
different loading patterns. Our algorithm, the Up-Down algorithm, is efficient because it gives users access to
remote cycles fmm &he processor bank without severe overhead. To be fair, the algorithm considers past behavior
by trading off the amount of execution time allocated to a user and the amount of time the user has waited for an
allocation. Since we assume that all workstations are entitled to equal rights, heavy users should not be allowed to
dominate the remote cycles at the expense OP light users. Algorithms that do not consider past behavior do not
protect the high quality of service for light users. Light users with steady demand will have increasing remote cycle
wait ratios as heavy users increase their demand. Heavy users will have greater throughput with a naive algorithm
when comparing it to the Up-Down algorithm, but the overall throughput of the system will be as good when using
the Up-Down algorithm. A description of the Up-Down algorithm follows.

4.4.1. The Up-Down Algorithm
In this algoIithm, the scheduling coordinator bases its decisions on an allocation table called the schedule

index table, SI. An entry SI[i] is the schedule index for workstation i. The values of the SI table are used to decide
which workstation is next allocated remote capacity. Initially, each entry of the table is set to zero. The values of
the SI table are updated whenever new capacity becomes available to the system. This occurs when a station’s state
goes from NA to AV. or when a remote iob comdetes and leaves the svstem. The SI entries are also DeriodicaIlv cI--- --- .I-- - - =

26

updated after a scheduling time interval Schedlnterval has expired. The interval should not occur too often due to
the overhead of placing and preempting jobs on a remote processor, and it should occur often enough to give
stations with low SZ entries access to a node without toa much waiting. Workstations with smaller SZ entries are
given priority over workstations with larger SZ entries. Also, the workstations with smaller entries that want a node
but do not have one will preempt workstations with larger SZ entries that have nodes. Workstations with smaller SZ
entries are given a remote processor first, and then other workstations are given a chance. If extra capacity is
available, then the workstations with the lower SI entries are again given preference. No workstations with smaller
SZ entries that have already acquired remote cycles for the next interval can preempt other workstations with larger
SI entries. Any time two or more workstations with the same schedule index contend for cycles, the workstation
allocated the cycles is randomly chosen. Table 4.2 outlines the allocation algorithm for remote cycles.

We want the algorithm to adjust to changes in background load patterns. Light users that increase their loads
significantly will have their priority decreased so that they will be considered heavy users, and heavy users that
decrease their loads significantly will be considered light users. Table 4.3 summarizes the update policy for the SZ
table. Four schedule index functions (f, g, h, and I) are employed to adjust for changes in load patterns. The
functionfis the assessed charge given to workstations (amount SI entry is increased) for using remote cycles. This
wouId cause a light user that incieases its load significantly to have its pIiority decreased until it is viewed no
differently from a heavy user. For each scheduling interval a station is granted a processor from the processor bank,
the SZ entry is increased proportionally to the number of processors granted for that interval as shown by the
Function f. The function g is the credit awarded to workstations (amount SZ entry is decreased) for waiting for
cycles. The SZ entry is decreased if a station wants a remote processor but was denied one according to the function
g. The functions h and 1 stablize the priority of the workstations when they do not want cycles. Any station that

Allocation Of Processor Bank Nodes For Background Jobs

at each scheduling interval (
S1+ [bag of workstations that have nodes allocated 1
S2 t [set of workstation that want nodes allocated J

1
for the number of nodes free (

if S2 <> EMPTY (
s = workstation in S2 with smallest SI entry
allocate a node to s
s2 t s2 - [sl

I
else break,

1
while S2 <> EMPTY (

s = workstation in S2 with smallest SI entry
t = wokstation in S1 with largest SI enuy
if SI[s] c SI[t] (

preempt a node From t
allocated a node to s
S 2 t S 2 - s
s1 t- s1 - t

1
else break;

-.A.----. --...- - --.- -.-
Table 4.2.

27

does not want a remote processor and has a positive SI entry will have its schedule index decreased by the function
h every intend until the entry reaches zero. This means that a heavy user that significantly decreases its load will
have its index lowered until it is viewed no differently from a light user. Any station that does not want a remote
processor and has a negative SZ entry will have its entry increased every interval until it reaches zero as shown by
function 1. Once a station’s SI entry reaches zero, it will stay there until it wants a processor. Figure 4.2 illustrates
how the Up-Down algorithm modities the SZ table. The figure represents the value of the index of station i , SIji],
over time. The figure shows how the index for a station changes when a station waits to receive remote cycles,
when remote cycles are allocated, after a job has completed, and when there is no need for remote cycles.
Depending on the accessed reward and penalty received by each station, the index for each station goes up and
down. This gives the name to the Up-Down algorithm. In Figure 4.2, the SZ[i] is initially zero. When a job arrives
and there is no allocation given, the index decreases according to g(Sl[i]). Afer an allocation is made, the index
rises according to f(SI[i]). If two allocations are given, the index rises twice as fast, namely, 2*f (SZV]). The
completion of one of the jobs causes the index to rise according to f(SZ[i]). When the second job completes and
there are no alIocations or jobs waiting, the index decreases to zero by the function h(Sl[i]).

4.4.2. Algorithms Used For Comparisons
For comparison with the Up-Down algorithm, we have selected two algorithms that do not use past behavior

when deciding how to allocated remote capacity. These two selected are the Random and Round-Robin algorithms.
All of the decisions of the Random algorithm are made without reference to any past decisions. The Round-Robin
algorithm makes its allocation decisions in a cyclic order to determine which workstation is next given remote
capacity. We compare the Up-Down algorithm with the Random and Round-Robin algorithms to show that less
sophisticated algorithms are not adequate to fairly &locate remote cycles and to provide steady performance results.
The Up-Down dgorithm, Random, and Round-Robin algorithms are simple to implement and are efficient in
providing extra cycles when they are wanted. They differ in the way they treat users with diffeIent workloads.

The Random algorithm’s name tells a lot about it. Whenever there is contention for cycles, the Random
algorithm randomly picks one of the contenders to receive the resource. Whenever there is no contention, a
requester is given the resource. Whenever a workstation is allocated a remote processor, the workstation will keep
the remote processor until either the job terminates, or the remote processor becomes busy by its local user.

The Round-Robin scheduling algorithm requires the scheduling coordinator to maintain an order whenever it
allocates remote cycles to contenders. Each workstation is given a chance in a particular order to receive remote
cycles if they want them. If they do not need them when their chancq occurs, they will have to wait until everyone
else gets one chance before another chance is received. Once allocated a remote processor, a workstation keeps the

Modification Of The Schedule Index Table (SI)
During Each Scheduling Interval
For Each workstation (i)

for each i (
if i wants a pIocessor bank node (

if i has a node then SI[i] :=

else SI[i] := SI[i] - g(S1.i);
SI[i] + NumProcessors*f(SI,i);

I
elsif SI[i] > 0 then SI[i] := SILi] - h(S1.i);
elsif SI[i] c 0 then SI[i] := SI[i] + l(S1,i);

1

Table 4.3.

I Allocation '
Allocation

Figure 4.2: Modification Of Station i Schedule Index

--.- -
Parameter
servemean(i)
arrive(LightStati0n)
arrive(MediumStati0n)
arrive(HeavyStati0n)
NumPermanent(LightStation)
NumPermanent(MediumStation)
NumPermanent(HeavyStation)
Schedlnterval
JobTransfer Cost
- NumWorkstations

28

-----_.-

Value _-.--
5 hours for all stations i
2000 minutes
no such arrivals
no such arrivals
0
2
2-10
10 minutes
1 minute
13

allocation until either the job terminates or the remote processor becomes busy with some local activity. When a
remote job completes, the scheduling coordinator asks the next station if it wants the available processor and
continues in order until all processors are allocated or all woIkstations have been asked. If remote processors are
available but no workstation wants them, the scheduling coordinator periodically checks, with interval
Schedlnterval, to see if any background jobs have anived to use one of the available processors.

4.4.3. Simulation Study Results
In order to evaluate the performance of the Up-Down algorithm and the two naive algorithms, we conducted a

simulation study using the DeNet ILivny881 simulation language. DeNet is a discrete event simulation language
built on top of the general purpose programming language Modula-2 W i 8 3 1 . The simulation study was done
with the simulation parameter settings shown in Table 4.4. We have assigned NumWorkstations with a value of 13
which is the number of workstations we monitored as described in Chapter 3.

29

To show how workstations with a light background load perform in the face of different demand levels from
heavy users, we made all but two of the workstations in the experiments to have a light user, labeled by
LightStations. The two remaining stations were designated as MediumStation and HeavyStation. The first of the
two, MediumStation, has two permanent jobs ready for execution (Numl'emzanent(h4ediumStation) = 2). For the
HeavyStation, we varied NumPermunent(HeavyStation) from 2 to 13 jobs. The background jobs have a mean
service demand of 5 hours (servemean(i) = 5, for all 9.

Table 4.5 summarizes the schedule index functions selected for the Up-Down algorithm. We have observed
that at high utilizations, the SI of a station might become very large and would slowly reach zero when the station
changes from a heavy to a light load. We chose to concentrate on the function g to decrease the time it takes a
station's index to reach zero. Functionsf, h, and I will always return one as their value.

Our results show that the Up-Down algorithm maintains a fair allocation of resouxces to all types of users.
Under the Random and Round-Robin algorithms, light users suffer. IJnder the Up-Down algorithm, they do not
suffer. We compared the performance of the IJpDown algorithm with the other two algorithms based the criteria
defined in the inuoduction which are: (1) the remote cycle wait ratio, (2) the remote cycle percentage of light users,
and (3) the remote response time. The remote cycle wait ratio of Lightstations is computed by averaging the local
remote cycle wait ratios of the individual LightStarions. Likewise, the remote response time of LightStations is
computed by averaging the local remote response times of the individual LightStations. On the basis of these
criteria we will show that the quality of service LightStations and MediumStation enjoy in face of increasing loads
of the HeavyStation remains steady when we use the Up-Down algorithm. When we use the Random and Round-
Robin algorithms, the quality of service for Lightstations and MediumStation suffers as HeavyStation increases its
load.

We use the outlined performance criteria to compare the Up-Down algorithm with the Random and Round-
Robin algorithms. We see in Figures 4.3 through 4.6 that the Up-Down algorithm shows an improved quality of
service for Lightstations and MediumStations. Figure 4.3 presents the remote cycle wait ratio of LightStutions as a
function of NumPermnent(HeavyStation). We see that Lightstations in the Up-Down system maintain nearly
constant quality of service even as NumPermanent(HeavyStution) increases while the Random and Round-Robin
systems suffer a significant loss in remote cycle wait ratio for the LightStations. The improved ratio means the
Lightstations wait less to receive service from a remote resource. The medium loaded users, the workstations with
2 permanent jobs, maintain steady access to remote cycles as shown in Figure 4.4. In the Random and Round-Robin
systems, MediumStution suffers as HeuvyStation increases its load. For all the algorithms, the wait time of
HeavyStation is nearly zero since HeuvyStation almost always has some remote capacity assigned to it.

The light users as displayed in Figure 4.5 maintain a good quality of service in spite of increased loading by
others. It shows that the Up-Down system maintains a steady remote cycle percentage for LightStutions. The other
algorithms cause Lightstation to lose access to remote cycles as NumPermanent(HeavyStation) increases. Since
background jobs execute locally if their workstation's state is AV, not all background jobs execute remotely. For
this workload, the Up-Down algorithm provided remote capacity for 54% of the capacity submitted by the lightly
loaded machines. This remote cycle percentage remains steady as NumPermnent(HeavyStation) increases. The
remote cycle percentage of the the Round-Robin algorithm decreases from that level to about 44% of its cycles. The
Random algorithm's remote cycle percentage decreases to 41% of the cycles only because some other user wanted
more cycles.

= 2, else if SIli] - min (SI) >= 3

= I, for all workstations i

= 3, if SI[i] - min(S1) >= 6

= 1, otherwise.

I ValueRetumed -- ---
l(S1,i)

-_.--_--.....-
Table 4.5: Up-Down Schedule Index Functions.

30

1501

2 4 6 a 10
NumPermanen t(I1eavyStation)

Figure 4.3.
Remote Cycle Wait Ratio

(LightStutions)

R 500
e
m
0

400 e

C
Y
c 300
1
e

w 200
a
i
t

R
a
t
i

100
'\, \

'\ \

0 0
2 4 6 8 10

NumPermanen t(Heav yS tation)
_- -

Figure 4.4.
Remote Cycles Wait Ratio

(Mediudtation)

1

31

55,

52

P

r

e

49
C

n
t 46

43

‘\\ UpDown
s,, \ Rmdom *--------

Round Robin- - -
\

’\, \
\\, \

‘\\ \
’, \

40
4 6 8 10

NumPemanent(HeavyStation)
2

2.0

2
1.8

5

3
1

:

?

’ 1.5

x
a

i 1.3
t

3

1.0
4 6 8 lo

Ndermanent(HeavyStation)
2

Figure 4.5.
Percent Of LightStations Job
Cycles Executed Remotely

Figure 4.6.

(Zig htStafions)
Remote Response Ratio

Figure 4.6 shows that the response ratios of jobs that complete from remote locations for the Up-Down
algorithm are better than those of the other algorithms. The remote response ratio is steady as
NumPermanent(HeavySfution) increases. The remote response ratios of the HeuvyStation are nearly the same for
all the algorithms. For LighfStutions, the Up-Down algorithm has an improvement in remote response ratio as much
as 2550% when compared to the Random and Round-Robin algorithms.

4.5. Summary
This chapter presents the design of a long term scheduling system. This system hunts for available

workstations to donate to the processor bank and allocates jobs to these stations. A central coordinator manages the
available capacity in the processor bank and allocates it to local schedulers. A local scheduler places jobs of its
workstation’s backgound job queue at remote workstations that weIe allocated to the local scheduler by the central
coordinator.

We have presented the Up-Down algorithm, a new long te;m scheduling algorithm for allocating capacity of a
processor bank. A set of performance criteria is pIesented and used to evaluate the new algorithm. Our algorithm
has been evaluated using an activity trace from actual workstation usage. We have shown that the UpDown
algorithm significantly performs better than the Random and Round-Robin algorithms. The quality of service lightly
loaded users experience is not harmed by increasing loads by other users, and will remain steady even if other users
change their demand. The user’s service degrades significantly with the other systems. By using information of the
past allocation history, the Up-Down algorithm maintains steady remote cycle wait ratios of users. The other
algorithms which do not use past behavior information unfairly favor the heavily loaded users.

CHAPTER 5

Performance Profile of the Condor System

5.1. Introduction
A better understanding of a design is possible when the design is actually implemented. Condor is the

implementation of a long term scheduling system described in Chapter 4. In Chapter 5 we portray a performance
profile of Condor. The performance portrayal comes from observations during one month in which background jobs
were profiled and the system utilization was monitored. We show the pattern of service demands of users, as well
as the quality of service users received. The results display Condor’s ability to increase the utilization of a
processor bank formed from a cluster of workstations. There is little inteIference between the jobs Condor
schedules and the activities of people who own workstations.

The performance portrayal of Condor introduces a new performance measure called leverage. Leverage is
the ratio of capacity consumed remotely at the processor bank to the capacity consumed locally for the support of
Iemote executions. When little local capacity is needed to support the execution of jobs at the processor bank, the
leverage of the jobs is large. A small leverage means it is better to execute jobs locally than to consume a great
amount of local capacity to support the execution at the processor bank. We obsemed the leverage of jobs
executing on our system to quantify the benefit the Condor system provided to its users.

Section 5.2 gives a performance profile of the Condor system, which includes the utilization of the processo1
bank, the quality of service given to background jobs, and the impact that remote execution has on the home
workstation. In section 5.3, we present a discussion of issues that became apparent due to the implementation of the
Condor system. A summary of the performance of Condor is given in section 5.4.

5.2. Performance
The performance results we report are from observations of the Condor system over a 1 month period. We

present details of the way the system was used and analyze the quality of service it provided. This analysis includes
the wait ratios users endure when they submit background jobs and the cost suffered by users at their local
workstation to support remotely executing jobs. Our results are based on observing 23 workstations. Table 5.1
summarizes the activity of users during the period. It presents the number of jobs each user submitted, and the
average service demand of a job per user. User A accounted for most of the consumption of remote capacity. This
heavy user often tried to execute as many remote jobs as there were workstations in the system. The other users of
Condor consumed capacity occasionally and can be classified as light users.

Average Demand/Job Total Demand Percentage of
(in I~ollrs) (in Hours) ,--Total Demand -- ...---

6.2 4278 90
2.5 345 7
2.6 101 2

D 40 0.7 28 0.6

Table 5.1: Profile of User Service Requests.

32

33

401 I

P
e
r

e
n
t
a
g
e

0
f

J

b

C

0

0 2 4
Service Time (in hours)

6

--I ---I.--p____.----

Figure 5.1: Profile Of Service Demand.

2
e

e

L
e

g

h

U

U

n

t

1 15 30
Davs In Month

Figure 5.2 Queue Length.

The service demand of jobs submitted to the system were typically several hours in length. With the
exception of User D, all users had an expected demand per job that was greater than 1 hour. Figure 5.1 shows the
cumulative frequency distribution of jobs Served by the system. For each hour i, the curve shows the percentage of
jobs whose service demand was less than i hours. The average service demand was about 5 hours. The median
service demand was less than 3 hours because shorter jobs were submitted more frequently than longer jobs.

Jobs axrived at the system in batches. Figure 5.2 depicts the queue Iength of jobs in the system on an hourly
basis. The dotted line represents the queue length of light users. Jobs in service are considered part of the queue.
The difference between the total and light users’ queue lengths is the heavy user’s queue length. The figure shows
that the heavy user kept more than 30 jobs in the system for long periods.

’ We evaluated the quality of service users receive for the remote execution of their jobs. One measure of the
quality of service is the wait ratio of jobs submitted for remote execution. The wait ratio of a job is the ratio
between the amount of time a job waits for service and its service time. ?’he average of observed wait ratios is
illustrated in Figure 5.3. The solid line is the average wait ratio of all jobs, whexeas the dashed line is the wait ratio
of the light users. Note that in most cases light users did not wait at all. The average wait ratio results are
dominated by the wait ratio of the heavy user who waited significantly more. This is due to the Up-Down algorithm
giving steady access to light users without allowing heavy users to dominate the system. Light users obtained
remote resources regardless of whether the heavy user increased or decreased their load. Requests of the light users
were typically small enough that available capacity could be immediately allocated to them. The Up-Down
algorithm allocated remote capacity to light users and preempted the heavy user. When the light users’ jobs were
completed, the heavy user’s jobs were resumed to consume available capacity. Typically the heavy user was
allocated some capacity since the light users’ requests were not large enough to consume all available capacity.

We measured the amount of extra capacity the 23 workstations provided to Condor users. During the
observed period, 12438 hours were available for remote execution, of which 4771 machine hours of capacity was
consumed by the Condor system, Note that almost 200 machine days of capacity that otherwise would have been
lost were consumed by the Condor system! Figure 5.4 shows how the utilization varied over time. The solid line is
the system utilization which is the combination of local activity and remote executions, whereas the dashed line
shows the local workstation utilization. Local activity remained low for the month period. One the average, local

34

Average

---.-.*-----

Light Users

0

-
Figure 5.3: Average Wait Ratio.

2 4
Service Time (in hours)

6

i

!

35

u
t
i
1
i

a
t
i
0
n

z

I I U

I ~ c d Activity

1 15 30
Days of Month

Figure 5.4 Utilization of Remote Resources.

utilization for the month was 25%. However, due to the Condor system, we observed long periods that all
workstations were utilized. The Condor system identified available capacity and allocated it to its users.

Each day of the month the amount of available capacity in the system varied. Figure 5.5 gives a closer view
of the utilization of the system over one working week (Monday through Friday). Notice the peaks of local activity
during the day, and how the capacity decreased in the evenings. The range of utilization generally varied from 20%
in the evenings and nights to 50% for short peak periods in the afternoons. Figure 5.6 presents the the queue length
of light users and the total queue length for that week. Notice the sharp rises in the queue length which represents
batch arrival of jobs. Much of the time duing the week the queue length of the heavy user was larger than the
number of machines available.

5.2.1. Impact on Local Workstations
The implementation of remote execution facilities should-be efficient so that users at workstations need not

use much of their local capacity to support remote executions. We studied the impact the remote execution facility
has on users at their workstations. A user has to devote some local capacity to support the placement and
checkpointing of remote jobs and the execution of system calls. In addition, a local scheduler and the coordinator
consume some resources.

It is important to keep the capacity consumed by the coordinator and each local scheduler small since some
users might rarely use the remote execution facility. Our observations show that these cost are indeed small. The
local scheduler of a station with background jobs running has been observed to consume less than 1% of a station’s
capacity. This capacity is independent of the size of the system. The consumption of capacity by the coordinator
has been observed to be less than 1% of a workstation’s capacity as well. The size of the system is expected to
affect the amount of capacity consumed by the coordinator. We have observed a system with as many as 40
workstations. Even with this system size, the coordinator consumes less than 1%. This leads us to believe that a
coordinator can manage as many as 100 workstations with only a small impact on the workstation that hosts it.

36

;J
t
i
1
1
2

t
a

i
a
n

0.0 c--Y--I--l
Mm Tms * Wad lbur Fd

ONE WEEK -
Figure 5.5 Utilization for One Week.

50

40
2
1
!

E
30

.4

; 20
I

t
1

10

0
Mon nLcr wad nur Fri

ONE WEEK

Figure 5.6 One Week Queue Length.

We measured the costs that remotely executing jobs bring on their home workstations. To support the remote
execution of background jobs, the home workstation has to transfer jobs to remote sites, checkpoint them when they
are preempted, and execute their system calls. This support can have a significant impact on the home woIkstation.
The costs associated with this support depend on the costs and rates of these activities.

The capacity required to place and checkpoint a remote job ‘depends on the size of the job. Placing and
checkpointing jobs consume approximately 5 seconds of CPU time per megabyte of the checkpoint fiIe. We
observed that the average checkpoint file size was ‘/z megabyte. Therefore, the average cost of placement and
checkpointing was approximately 2% seconds.

The rate at which jobs were checkpointed after they were initially placed is shown in Figure 5.7. This rate is
the number of times per hour that a remotely executing job is moved from one location to another. Jobs are
checkpointed when the location at which they have been running becomes unavailable for remote execution. In
addition, jobs can be checkpointed when the coordinator decides that one user requesting remote cycles has priority
over another user. The rate of checkpointing was relatively steady over the range of service demands, with the
exception of the short jobs. The reason that longer jobs have a lower rate of checkpointing can be explain in terms
of the local usage patterns of workstations. When jobs are preempted due to local user activity, they will be placed
at another remote location if one is available. Since local workstation activity is not uniform across the system,
some workstations tend to be available for short periods, and other workstations tend to be available for much
longer periods. Long jobs have a lower checkpoint-rate because eventually they are placed at a woIkstation that
experiences no local activity.

System calls by a remotely executing job can have a significant impact on a local workstation. The average
capacity consumed on a VAXstation I1 to support a remote job executing a system call is approximately 10 msec of
CPU time. This is 20 times the cost of a Unix system call, due to the cost to support remote communications.
Programs executing large numbers of system calls, such as reads or writes, in pxoportion to other instructions would
be better off if they were executed locally instead of remotely. For a remotely executing job with an extreme
number of system calls, a Iocal workstation supporting the remote system calls would consume more capacity than
the amount of useful work accomplished at the remote site.

37

c h o*81
e

k
P

i
n

C

0

t
S

P
e
I

H
0
U
r

2 4 6
Service Time (in hours)

0 I
I-.-.-

Figure 5.7: Rate Of Checkpointing.

20001

.. . -
0 2 4

Service Time (in hours)
6

Figure 5.8: Remote Execution Leverage.

We define a new performance measure called leverage to compare the amount of effort a local workstation
must endure to benefit from having useful woIk conducted remotely. The leverage of a remote job is defined as the
amount of remote capacity consumed to execute a job divided by the amount of local capacity consumed to support
remote execution. The local capacity is the combination of capacity used to support placement, checkpointing, and
system calls. If more capacity is consumed locally to support remote executions than what is actually accomplished
remotely, the leverage of the job is less than 1. Figure 5.8 shows a profile of the Ieverage of jobs. The average
leverage was approximately 1300. This means for every 1 minute of local capacity consumed to support remote
execution of jobs, nearly 22 hours of remote capacity was received by the users! Longer jobs had a larger leverage
than shorter jobs. This is because the rate of checkpointing for short jobs was higher than for long jobs, and the
amount of input/output for the short jobs was relatively the same as that of long jobs. Neveqtheless, the leverage for
jobs with service demands less than 2 hours averaged approximately 600. This means that even a short job with
only a service demand of 1 hour required only about 6 seconds of local capacity to support remote execution.

5.3. Discussion
The implementation of the Condor system brought a clearer understanding of several issues. Many of these

issues relate to the nature of background jobs and the Iarge amount of memory needed for their remote execution.
For example, in our system a job that is executed remotely is placed on the remote station's disk. Because users of
workstations often do little to manage their own disk space, users let their disk become full. When a disk is full, a
remote job cannot be placed on the workstation for remote execution. Even if a workstation is available, the disk
might be full so that no remote job can execute there. The coordinator must know not only which workstation's
processor is available, but has to keep track of available disk space. The checkpoint file is placed at a remote
location's disk since the placement, checkpointing, and the handling of system calls for remote jobs is conducted
outside of the kernel of the local operating system.

The issue of disk space affects users in another way. Users often like to execute many background jobs at a
time. If users do not have much local disk available, they will be restricted on the number of background jobs that
can be executing simultaneously. The restriction occurs since checkpoint files of remotely executing background
jobs axe kept locally. Space can be saved if disk servers axe dedicated for storing checkpoint files. Another solution

38

to the disk space problem is to share text segments. This is effective since users often submit several occurrences of
the same job to the system with only different parameters to evaluate. An example is when users submit simulation
programs to the system, Only one copy of the text segment might be needed for several executions.

Because placing and checkpointing remote jobs has an impact on a local workstation and the network, our
implementation does not cry to place or checkpoint several jobs simultaneously. We have noticed that if several
machines are available, and users have several background jobs waiting for service, the performance experienced by
a user of his local workstation is severely degraded if all jobs are placed at the same time. Our current
implementation of the local scheduler places a single job remotely every two minutes to distribute over time the
impact on local workstations and the network.

Our design philosophy has been to ensure that the Condor system does not interfere with users and their local
activity. Remote jobs are only executed when there is no local activity. However, one element of our
implementation differs with our design philosophy. When local activity resumes at a workstation where a foreign
job is running, the foreign job is stopped on the station and is kept there to see if the workstation will soon be
available. If it does not become available within 5 minutes, the job will be checkpointed and moved from the
location. The strategy has worked well since many of the workstations' unavailable intervals are short. However, it
does not completely follow a model where users reclaim all local resources as soon as they return to their
wokd'tations. The CPUs are immediately returned, but disk space consumed by remote jobs is not released until the
checkpoint files are moved. If a user has Little local available disk space, the checkpoint file might interfere with
local activity until the file is moved. We consider a modification to our strategy so that checkpoints of remote
executions are periodically taken. When a workstation's owner resumes activity at a location executing a remote
job, the new strategy is to kill the job immediately. This minimizes any interference a remote job has with the
owner of a workstation. The only work lost is that between the job's most recent checkpoint and the time it was
terminated.

5.4. Summary
Condor has proven to be an exttemely effective means of improving the productivity of our computing

environment. For a system of 23 workstations, large amounts of capacity were observed to be available for remote
execution. About 75% of the time the workstations were available as sources of remote cycles. The effectiveness
of Condor is demonstrated because the system caused the workstations to be fully utilized for long periods. Over a
one-month period, users consumed as much as 200 machine days of computing cycles from available workstations.
The checkpointing feature of our remote execution facility insured users that their jobs would complete if their jobs
were preempted by users at remote locations, or if remote locations failed. We showed that users need only to
dedicate an extremely small amount of workstation capacity locally to received huge amounts of remote cycles. We
report that the leverage of remote execution observed was 1300, which means for every minute of local capacity
supplied, almost 1 day of remote CPU capacity was received.

CHAYTER 6

Reserving Capacity of the Processor Bank

6.1. Introduction
A processor bank can docate capacity on the basis of time or availability. Chapter 4 discussed the design of

a system that provides capacity on the basis of availability. This chapter presents a design of a system that allocates
capacity on the basis of time. Users want to reserve capacity (in the form of partitions of computers) in advance to
insure access to capacity at specific times. For example, a researcher might want to reserve a partition for specific
periods in order to develop distributed computations. During the pexiod of a reservation, the partition that is
allocated to the researcher is not shared with other users of the processor bank. Nevertheless, the researcher suffers
outside interference when a station in the allocated partition is withdrawn from the processor bank by its owner. To
compensate for this interference, the researcher is allocated another station to replace the withdrawn station if a
machine is available.

To evaluate the effectiveness of Ieserving capacity, the rate of replacing a machine in a partition (due to an
owner withdrawing his workstation fiom the processor bank) needs to be quantified. We refer to this rate as the
preemption rate. When a machine in a partition is preempted, an unreserved available machine is obtained as a
replacement. In order for users to be satisfied with the processor bank for support of reservations, the preemption
rate must be low. By observing a cluster of workstations, we found that the preemption rate is low and replacement
machines are available in most cases, even when as many as 40% of the workstations in the cluster are reserved.

Encouraged by our observations of preemption rates and the availability of replacements, we proceeded to
design a reservation system to extend the Condor system. The design of the system aims to provide a good quality
of service to those requesting reservations. To provide good service, each user should receive opportunities to
reserve capacity, The heavy users who frequently reserve capacity should not inhibit the access to capacity by light
users who reserve partitions of the processor bank infrequently. An algorithm for allocating reservations should
insure that light users are able to make reservations, yet enable heavy users to reserve unused capacity. This chapter
includes the presentation of an algorithm, called the free-market resenation algorithm, with this goal. It is designed
to pxovide users with steady access to reservable partitions of the processor bank for those who infrequently reserve
capacity. By means of the algorithm, users trade privileges of receiving future reservations. Each user spends
"money" to obtain a reservation. The "price" of a reservation is partially determined by the supply and demand of
reservation periods.

The design of the reservation system, which includes the design of the free-market algorithm, is given in
section 6.3. Section 6.2 presents a study of the usage patterns of a cluster of workstations. This study shows that it
is feasible to reserve partitions OF a processor bank that is formed from a cluster of workstations. Section 6.4 gives a
summary of the reservation system design,

6.2. Usage Patterns of Workstations
Stations must be available for long periods to warrant the development of a processor bank that supports

reservations. In order to gain insight into the extent of workstation availability for reservations, we need to observe
activity on a large cluster of workstations to understand the size of partitions that could be allocated on the basis of
time. We would like to obtain inFormation from a large number of woxkstations over a long period. If we look only
a small number of stations, a single user's activity will greatly affect the observed percentage of stations that is
available for reservation, and the average preemption rate experienced by users who reserve partitions.

The study presented in Chapter 3 showed the average amount of available capacity from 11 stations over a 5
month peIiod. Two additional stations were observed for 3 months. The study of Chapter 3 analyzed data over a
long period to understand the amount that can be expected for allocation to background jobs from month to month,
day to day, and how to hour. However, we would like to observe a larger number of stations to better understand

39

40

the percentage of workstations in a cluster that could be reserved. We were fortunate to be able to observe 23
stations for one month. These stations were owned by a variety of users: 5 by faculty, 5 by systems programmers,
and 13 by graduate students. Although we wish our observations could have lasted for a longer period, we feel that
the obsefvation of a larger number of stations gives more insight on the size of partitions that can be allocated for
reservations. Therefore, we use this observation for analyzing the availability of workstations for reservations.

In this section, we characterize the availability of partitions for reservations, and study the preemption rate
that users would have experienced if the observed available workstations were foImed into a partition of reserved
machines. Figure 6.1 gives the availability of the observed period. Each paint on the curve is the expected
percentage of workstations in the AV state. It displays availability information that is similar to that described
Chapter 3, but the time graph helps to illustrate how the profile of availability changes daily. We want to take
advantage of our knowledge of the daily change of availability. As discussed in Chapter 3, we denote available
stations as being in the AV state, and non-availabIe stations in the NA state. The dashed lines help identify the rates
in which the system availability changed with respect to a given level of availability. For example, the horizontal
line for 40% availability indicates that 40% of the machines were always available. The 60% availability occurred
the majority of the time with only short intervals lower than this level. Notice that the peaks and valleys of the
curve had similar characteristics throughout the month. The peaks represent periods of high availability such as
evenings and weekends, and the valleys show weekday afternoons. The valleys rarely went lower than 50% and the
peaks were well above 70%. A reservation scheduler could assume that it would find 50% of the woxkstations
available for allocations during peak periods, and more that 70% at lightly loaded intervals.

Figure 6.2 profiles workstation availability levels. It represents the probability of maintaining each
availability level. For a given percentage of workstations in the AV state, the curve shows the corresponding
amount of time the system stays at that level. The solid line is the average profile over the month. Since the
availability level vaies for different times of the day, we show it for day, evening, and night hours. The dotted line
presents the profile of hours duxing the day between 8ani and 5pm. The alternating dashed line gives the profile of

I -__ --.
1 15 3(

Days of Month

i t

0
i

n 0

Figure 6.1: Hourly Availability

~ -
Figure 6.2 System Availability ProEle

41

evening hours between 5am and 12pm. The night hours between 12am and 8am are shown by the dashed line.
The average system availability of Figure 6.2 indicates that there is a high probability (more than 80%) that

60% or mole of the workstations are in the AV state. The 80% workstation availability level occurred as much as
40% of the time. The probability sharply decreases for higher levels of availability. The day, evening, and night
curves show the variation of the availability throughout a day. For example, there is nearly 100% certainty during
the night and 70% certainty in the evening that the system is 80% available. Eighty percent availability occurs
during the day only 20% of the time. These results indicate that a tremendous amount of capacity can be used for
our reservation system.

The workstations in the processor bank that are allocated for reservations need to have a low preemption rate.
The user of a reservation system is affected by the frequency that an owner reclaims a workstation in a reserved
partition. When a preemption by an owner occurs, the user needs to be allocated a replacement station. We
analyzed the workstation usage patterns to characterize the rate that preemptions occurred during an hour interval.
To analyze the patterns, we observed the number of preemptions that occur during an hour interval for a given
partition size. The partition sizes varied from 040% of the total number of stations. (The 40% level of reservable
workstations (10 stations) is chosen since Figure 6.2 showed that with this value there is a very high probability that
the reservation size can be satisfied.) When a machine in a reserved partition is preempted, an unreserved AV
workstation replaces it. If there is no AV workstation for replacement, the hour is counted as an error. The error
probability is 100% minus the probability of availability of stations. Therefore, the probability of errors corresponds
to 100% minus the availability levels of Figure 6.2.

Two methods for selecting reserved stations from a group of AV stations are studied. The first method is
random selection. Stations were randomly chosen with each AV station having an equal probability of being
chosen. The second method (Longesr Free) chooses the station that has been in the AV state for the longest time.

1.5

P

e
m
h . 0

P
1
0 n

b . 5 U

r

0.0
0 10 20 30

% Workstations Reserved
40

Figure 6.3: Average Hourly
Preemption Rate

3 .O

P

e m
g2.0

P
I
0

i, 01.0
U r

I

L I- -
Figure 6.4: Weekday Preemption Rate

42

From the distribution of availability intervals that we discussed in Chapter 3, we expect that the Longest Free
selection method will have a lower preemption rate than the random selection method. This is because stations that
have been in the AV state for a long period have a greater probability of staying in the AV state than those stations
which only recently became AV. As presented in Figure 6.3, the Longest Free selection method had significantly
lower preemption rates for al l percentages of reservable workstations. Figure 6.4 gives the preemption rates of the
Longest Free selection methods for day, evening, and night hours (Monday through Friday only). The evening and
night hours have extremely low preemption rates. During these times users could reserve large partitions with little
or no interference.

Since several users could be allocated reserved workstations for any hour in an actual system, the preemption
rate experienced by users is not the same as the pIeemptian rate of Figure 6.4. When a preemption occurs in an
hour interval, all users of reserved workstations are not necessarily affected. We simulated a reservation system
where the percentage of reservable workstatians varied from 040%. The simulation computed for each hour the
percentage of users that experienced preemptions. In the study, the number of users in an hour interval is obtained
randomly at the beginning of the hour and varies between 1 and the number of reservable workstations. Each
reservable workstation is randomly allwated to one of the possible users. The Longest Free selection method was
used to replace preempted workstations. Figure 6.5 gives results of this study by displaying the percentage of users
that experienced preemptions, and the variations for day, evening, and night hours. It shows that few users
experienced preemptions in the evening and night hours, and few preemptions occurred during the day when a small
percentage of workstations were reserved.

75

A
50 S

S

e r

P r
e
e
m
‘5 25
8

0

,
- - - Evening ,a’

- - . _ - Night ,#*’

,
, , , ,

I

,

0 10 20 30 40
% Workstations Reserved

--. .__.--- .-
Figure 6.5: Preemption Rate Experienced by ‘IJsers

43

Funher investigation of the traces helps us understand how the utilization of workstations varies from station
to station. Table 6.1 shows the hourly utilization of individual workstations during weekdays and weekends. The
hourly utilization of a workstation is the percentage of an hour interval that the workstation was in the NA state. 'fie
utilization of day intervals is the average of the hourly utilizations between the times of 8am and 5pm. The
utilization of the evening hours is the average of the hourly utilizations between 5pm and midnight. For the
remainder of the time (midnight to 8am), the hourly utilizations are averaged together to produce the night time
utilization. The table separates the weekdays (Monday through Friday) from the weekends (Saturday, Sunday). As
shown in the table, several of the stations had utilizations that were extremely low during night and weekend hours.
Stations 1, 12, and 14 were always available on weekends. All but seven srations had periods where they were
utilized less than 4%. Given the low utilization of these machines, many of these stations could have been donated
to the reservation system for night times, and for large portions of the weekends.

All of the stations had long periods where they were left available. TabIe 6.2 shows the amount of long
available periods occurring during the month. It presents the number of intervals where the stations were available
for periods lasting longer than 10,24, and 48 hours. For these times the owners of the workstations could donate
their stations to the processor bank. This table also gives the longest available interval for each station during the
month. AU but two stations had AV intervals lasting longer than 2 days (48 hours). One station had an AV interval
lasting over 11 days. (277 hours).

In the reservation system design presented in the next section, a user can make a reservation without
specifying the machines to be included. Nevertheless, sometimes a user wants to reserve a specific machine. A
specific machine can be reserved, in our view, only if the machine has been manually donated to the processor bank

...
Machine
Name

Station 1
Station 2
Station 3
Station 4
Station 5
Station 6
Station 7
Station 8
Station 9
Station 10
Station 11
Station 12
Statbn 13
Station 14
Station 15
Station 16
Station 1 7
Station 18
Station 19
Station 20
Station 21
Station 22
Station 23
Average

-- .--
Jtilization During Weekday! nd Weekends

Dav
16
64
52
55
69
33
40
27
20
25
23
20
25
19
35
26
8
22
11
26
30
30
73
32
- -
--

Weekday
Evening
14
58
48
26
12
15
39
16
4
10
30
2
6
12
23
3

11
2
8
16
32
37
72
20 --

-I.
Night

10
56
39
19
0
14
25
12
1
0

15
0
1
0
22
0
4
0
1
9
13
2
69
11 --

g&
0
51
44
0
10
25
24
4
4
7
2
0
14
0
20
5
3
3
5
32
17
15
50
14
- -
-

Weekend
Evening

0
51
45
0
0
25
24
0
0
5
9
0
7
0
33
1
12
2
10
28
14
27
50
14 --

_.--..I

Night
0
50
50
0
0
25
33
2
2
0
12
0
0
0
13
8
2
0
6
25
3
0
57
12

-

-
Table 6.1.

44

for a specified period. If there is a low probability that a woxkstation owner will use his woIkstation for an interval,
we ask the owner to make a manual donation for that interval. Due to the periodic availability of individual
workstations suggested in Table 6.1, and the long continuous periods of availability shown in Table 6.2, it is likely
stations would be manually donated on a periodic basis or for long continuous times. Periodic donations occur
because of users’ habits. Some users might not work in evenings or on weekends. On a daily or weekly basis, users
could declare their workstations available for reservations by others. Long continuous donations occur when users
are gone for a few days. These donations might be a one time occurrence. For the expected time a user is gone, he
could explicitly donate the machine to the processor bank. A scheduler handling reservations should encourage
users to make both types of donations to the processor bank.

Our results indicate that a reservation system can obtain from a processor bank large partitions of
workstations. In addition, a specific machine can be reserved if its owner manually donates the machine for specific
periods. We have found that the preemption rate experienced by users is very low for evening and night hours.
During the day, machines in partitions are more likely to be preempted. The tolerance that a user has for
preemptions will determine if the user reserves capacity during the day. If a user has short jobs, he might rarely be
affected by preemptions even during the day. This is because dwing the period of the reservation, the user might run
the jobs, analyze their results, and then rerun them. Due to the short duration of jobs, the preemptions will likely
occur between the periods of job executions.

Machine
Name

Station 1
Station 2
Station 3
Station 4
Station 5
Station 6
Station 7
Station 8
Station 9
Station 10
Station 11
Station 12
Station 13
Station 14
Station 15
Station 16
Station 17
Station 18
Station 19
Station 20
Station 21
Station 22
Station 23
Total

I

Long Reservable
iber of Inten

-----..---
NI -.

> 10 hours
11
13
14
16
22
14
15
14
20
20
23
19
25
12
21
21
22
23
14
18
23
24
6

410
..--..-

> 24 hours
6
3
2
5
4
5
1
6
5
6
2
6
3
3
4
6
6
6
6
4
3
2
1 --.--

146 .

lteNals

> 48 hours
7
1
1
3
2
4
1
4
4
1
2
4
2
3
2
2

- 1
2
3
2
1
0
0

57

S ---

--..--.-

-
1.ongest InteGii

(in hours)
66
49
59
95
69

114
69
97
89

113
52

112
67

277
69
87

159
68
93

132

Table 6.2.

I

45

6 3 . Design of the Reservation System I

The usage pattern of workstations support the development of a reservation system for the processor bank.
The design of a reservation system requires the consideration of several issues. First, the system should be
interactive and easy to use. The interface should d o w users to easily make and cancel reservations. For the second
consideration, two kinds of reservation requests should be allowed. The fust type is a reservation for a quantity of
machines without attention to the particular machines reserved. The number of machines in the reservation request
should be allowed to vary between an upper and a lower bound. The second type of reservation is specific to the
machines requested. A user might want station 12 to be reserved for 2 hours. The reservation of station 12 could
occur if the machine was manually donated for that period by the owner.

In order to conduct large experiments, a third consideration gives users the potential of reserving all the
machines in the processor bank. Nevertheless, the frequency that all machines could be reserved by a single user
would be restricted, so that heavy users who reserve large amounts of capacity will not unfairly dominate light
users.

Our design intends to allow users to make reservations using these considerations. The design augments the
structure presented in Chapter 4 for allocating capacity on the basis of availability. A high level view of our design
is given in Figure 6.6. As shown in the figure, workstations are interconnected by a high-speed network. As in the
Condor system, each station has a Local Handler. However, this local handler implements the user’s interface to
the reservation system. One station in the system holds the Reservation Coordinator, which corresponds to the
coordinator of the Condor system. The reservation coordinator maintains system reservation information. When a
user wants information from the system or to reserve capacity, a session is opened with the local handler. The local
handler requests and receives system information from the coordinator in order to fullill the user’s requests. The
coordinator has no more interaction with the local handler until the user wishes to close the session or to
acknowledge new reservation requests. When new reservation requests are acknowledged, the local handler
synchronizes its tables with the reservation coordinator. Synchronization is needed when new requests are made by

I r---.-.. I I ---.-

-
Figure 6.6: Reservation System Structure.

46

a user SO that old requests are not cancelled. A local handler implicitly synchronizes its tables when the user closes
a reservation session, or explicitly when a user invokes a sync command. At the time of synchronization, the
coordinator either accepts requests, rejects new requests, or withdraws any reservations cancelled by the user.
When a request is rejected, the local handler conveys this information to the user who can either make another
request or terminate the reservation session.

The duties of the reservation coordinator are simple under the above design. The coordinator only interacts
with local handlers when sessions are opened, and when reservations are synchronized. If the reservation
coordinator were to handle many messages during a reservation session with a workstation, or many types of
messages, the coordinator would not be able to manage many machines without neglecting its own user’s service
(the user on whose station the coordinator physically resides).

Since the reservation coordinator is a centralized server of reservation information, it is important that the
coordinator remains functional. Otherwise, the reservation system ceases to operate. To maintain the resemation
system, another site serves as the coordinator’s backup. This scheme was implemented for the Crystal system
meWitt871 to maintain its reservation information if the site which held the reservation information failed. The
backup site becomes the reservation coordinator when the original coordinator fails to function. The backup site
periodically checkpoints the reservation information to enable it to become the coordinator when necessary. Since
the amount of information kept by the coordinator is small, the checkpointing procedure is not complicated. The
information that the coordinator maintains is given in section 6.3.3.

The reservation coordinator is required to make a v&ety of decisions. One kind of decision involves
accepting or rejecting reservation requests from users. An algoIithm is needed that gives heavy reservation users
the ability to reserve large amounts of capacity without excluding the ability of light user to make reservations. The
algorithm should leave as little unreserved capacity in the system as possible whenever there is a demand for
reservations. We propose a reservation algorithm, called the free-market algorithm, to make the decisions for
allocating reservations.

63.1. The Free-Market Algorithm
We want a strategy for allocating reservations that gives heavy users access to reservations of partitions

without severely limiting light users’ access. This is a pIoblem that is similar to what the Up-Down algorithm
attacks for allocating capacity on the basis of availability. NeveItheless, there are additional problems to be handled
when allocating reservations on the basis of time. In a reservation system, allocations are made for future capacity.
The user receiving the reservation can cancel it before the future allocation occurs. A reservation algorithm needs
to adjust for the cancellation of capacity that has not yet been consumed. Since a reservation that is given to a user
can inhibit other users in their attempts to make a reservation, the algorithm should not encourage users to make a
number of reservations and then cancel them without any consequences suffered. In addition, reservations cannot
be preempted and given to another user in the manner as done, by the Up-Down algorithm. A user who has one of
her reservations preempted needs to be aware of its preemption before the date that the reservation is to occur. ‘I’he
user should receive a consolation award for relinquishing the reserved capacity.

Simple strategies can be designed for accepting or rejecting reservation requests. Before one designs a
complicated algorithm to solve a problem, we should understand if a simple algorithm will work. A simple strategy
for allocating reservations is illustrated by the Fht-Come-First-Serve (FCFS) strategy. In the strategy, the first user
to request an available slot is allocated it. A reservation slot is the granularity of time for which a reservation can be
made. The only reason to reject a request is if all slots are allocated. This strategy lets a heavy user access as much
capacity as she would like and therefore deny reservation requests of light users. To prevent this problem, some
simple strategies limit the amount of capacity reservable by heavy users. Such a strategy is the Re-Allocated
Capacity (PAC) algorithm. The PAC algorithm assigns everyone a specific number of reservation slots that they
can use. Once a user reserves her quota of preallocated capacity, no more capacity can be requested. A problem
with this method is that reservable capacity is often wasted when light users do not reserve their quota of reservation
slots.

To overcome the problems of simple strategies, we have designed a new algorithm called the free-market
algorithm. It makes reservable slots available to heavy users, but gives priority to light users when they want to
reserve slots. It allows a reservation made by a user to be preempted, and gives consolation award to an user who is

41

Free-&ket Algorithm

Preemptable-Time-Period

Discount-Rate

1 st-class-rate
2nd-class-rate
3nd-class--rate
Maximum_income

Initial,-P-Money
Initial-NP- Money
Early-cancel-time

Middle,-cancel-time

Late.-cancel-time

Last-cancel-time

Early-cancel..-rate
Middle-cancel.-rate
Late-cancel-rate
bt-cancel-rate
Num Workstations -

- Parameters
Time before which a station can
be preempted
Amount returned to station when
cancelled slot is xesold
Cost of 1st-class reservation, in P money
Cost of 2nd-class reservation, in P money
Cost of 3rd-class Ieservation, in NP money
Maximum P money from daily income
a station can own
Initial P money given w a workstation
Initial NP money given to a workstation
Days before reservation cancellation that
entitles user to early-cancel-rate refund
Days before reservation cancellation that
entitles user to middle-cancel-rate refund
Days before reservation cancellation that
entitles user to late refund
Last time before reservation that
it can be Cancelled
Highest refund rate for cancelled reservations
Middle refund rate for cancelled reservations
Refund rate for late cancelled reservations
Lowest refund rate for cancelled reservations
Number of Workstations in the network

Table 6.3.

preempted. Table 6.3 gives the parameters of the algorithm which are explained h this section. Suggested
parameter settings are listed in Table 6.4.

To make reservations, users must use reservation money. Users can specify the urgency of a reservation by
the amount of money spent on a reservation. Those users with the greatest demand for a slot and holding enough
money to support the demand are given priority. There are two types of money: Precious (P) and Not-Precious
(NP}. P money is for the purchase of priority reservations. This money can be accumulated, spent, and earned. NP
money is used as a method of allocating "leftover" reservation slots to users who have either spent all of their P
money or have little urgency for reservations. NP money can be spent but not accumulated or earned. The free-
market algorithm implements a "market" for buying and selling reservation slots. The reservation coordinator
manages the P and NP money.

Three reservation classes are available to stations in the system: lst, Znd, and 3rd class. A priority is
associated with each class, with 1st cIass as the highest pIiority. P money is spent when making 1st or 2nd class
reservations. To make 3rd class reservations, NP money is used. Reservations of a higher priority class can
preempt lower priority reservations. The 3rd class reservations of users with more NP money can preempt 3rd class
reservations of users with less available NP money. (The preemption of a reservation slot is unrelated to the
preemption rate of owners reclaiming their workstations from the processor bank, which was presented earlier in
this chapter.)

The purpose for three classes of reservations is to serve three types of user needs. The 1st class reservations
serve urgent requests. IJsers will tend not to have enough P money to make 1st class reservations often. The 2nd
class reservations serve users most often, since 2nd class reservations can be obtained at a smaller price. The 3rd
dass reservations serves the heaviest users. Heavy users that consume all of their P money use 3rd class
reservations to obtain available slots that are otherwise unused.

48

Free-Market Algorithm
Suggested Parameter Settings .. -..--- -

Preemptable-Time-Period 1 day
Discount-Rate 112
1 st-class-rate P = 2lslot
2nd-class-rate P = llslot
3nd-class-rate NP = llslot
Maximum-income P = Nun_Workstation*3
Initial-P.-Money P = Nun-Workstations
Initial-NP-Money NP = Num- ,Workstations
Early-cancel-time 3 days
Middle-cancel-time 2 days
Late-cancel-time 1 day

Early-cancel-rate 90%
Middle.-cancel-,rate 75%
Late-cancel-rate 50%

Last-cancel-_time 2 hours

-- Last cancel rate ..,_. 25%
Table 6.4.

Initially, the free-market algorithm gives each station Initial-NP-Money amount of NP money. The amount
of NP money in a station’s possession plus the amount used for current 3rd class reservations is always a constant.
When a 3rd class reservation is preempted or expires, the station receives back the previously spent NP money,

All stations initially have Initial-P-Money amount of P money. One difference between P money and NP
money is that P money can be accumulated through hvo different ways: daily income and capital gains. Income is
received by each station through an allotment allocated each day. However, the daily income is tumed off when the
amount of income a station accumulates reaches the maximum-income. This prohibits a station fiom remaining
available for an extremely long time, and then dominating the system by means of many 1st class reservations. The
money owned by a station resulting from capital gains has no limit. This money is earned by selling slots to others
at a higher price than what the original station paid. When 2nd class reservations are preempted by others with 1st
class reservations, the preempting station pays a small fee to the preempted station to pay for the inconvenience
suffered due to the preemption.

To illustrate how preemptions result in capital gains, we fist discuss how ordinary reservations are made.
When an user makes a request for a reservation slot, the type of reservation is specified. The reservation will be
either lst, 2nd, or 3rd class. Before the local handler will allow the request to be made, the user must have enough
money to cover the cost of the reservation. For each interval reserved, 1st class reservations cost P = 1st-class-rate
per resexved machine slot, the 2nd class reservations cost P = 2nd-class-rate per reserved machine slot, and the 3rd
class reservations cost NP = 3rd-class-rate per reserved machine slot. A user that does not want to risk a
preemption from some other user must make a 1st class resexvations. Otherwise, the request is subject to
preemption. If a user wants to preempt an existing 2nd class reservation, a 1st class request is issued. The cost for
the request will be P=lst-class-rate per reSeNed machine slot and additional fee of P = ?h*2nd-class-rate per
reserved machine slot, which is payable to the preempted user. The preempted user has earned a capital gain of P =
M*2nd-cfass-rate per machine slot. The preemption of a 3rd class reservation does not pay any extra money to the
preempted stations. This is because 3rd class reservations are only for the purpose of serving heavy users who want
extra reservation capacity but do not have the funding available to make them. Heavy users can acquire extra
capacity not wanted by others, but they will not dominate the system at the expense of others.

Users with 2nd or 3rd class reservations are subject to preemption until the preemptable._timegeriod before
the reservation. If a station is not preempted earlier than the preemptable.-time period before the reservation, then
the station will not be preempted. This avoids the possibility of users only knowing at the last minute if they have
machines reserved to carry out their experiments.

For accounting purposes, the amount of P money a station owns because of daily income is kept separate
from the amount acquired by capital gains. When a station spends money for first or second class reservations, the
capital gains money is spent fist, and then the W y income money. This keeps the amount of savings under control
so that a large savings will not be acquired. A station with a large amount of P money obtained from daily income
could later dominate the system for a long time.

There are times that a user would like to cancel a reseIvation. They should be allowed to do this, but
excessive cancellations should be discouraged. Otherwise, users could make as many reservations as they think
they might like, then at the last possible moment cancel them. If this is done, other users who were prohibited from
Ieserving the already allocated slots will be unaware that the reservations were cancelled. To discourage rampant
cancellation of requests, a user that makes the cancellation will be partially responsible for the cost of slots even if
they do not use them. The amount of partial responsibility depends on the length of time the cancellation occurred
before the reservation is scheduled. The greater the time between cancellation and reservation, the less
responsibility the user has for the cost of the reservation. For example, if cancellation occurred more than
early-cancel-time days before a reservation, an early-cancel. rate refund is given. For time between
early-cancel-time and midde-cancel-time days, the user receives m*ddIe.-cancel-rate refund. If cancellation was
between middle-cancel-time and late-cancel-time days before the reservation, a late-cancel-rate refund is
awarded. Otherwise, until last-cancel-time before the reservation, a last-cancel-rate refund is awarded.

If a user wants to buy slots that were previously cancelled, the user who made the cancellations is entitled to
refunds beyond the normal cancellation refund. To encourage buyers of cancelled slots, discounts are given. The
discount is the discount-,rate multipried by the difference between the original price, and the normal refund amount.
The amount of the discount is also refunded to the o1igina.l buyer of the slots.

The free-market algorithm serves to resolve reservation contention in a processor bank It rewards those who
use the system infrequently with high priority to capacity. It penalizes heavy users and those who frequently
acquire and cancel reserved capacity. Nevertheless, heavy users can receive additional capacity if they are the only
ones requesting it. The dgorithm is only one part of the reservation system. Another part is the interface, which is
described in the next section.

6.3.2. User Interface of the Reservation System
Table 6.5 shows the command interface that the local handlers provide to users of the reservation system.

The only command with an option is the Reserve command. This option allows users to resewe specific stations if
they have been manually donated to the processor bank for the specified reservation time. If specific stations are not
reserved, the coordinator will choose any of the available reservable stations. Note that the number of stations
requested can vary in a range from a minimum number to a maximum number. The coordinator will hy to meet the
request for the maximum number requested. For requests that cannot be met, the coordinator will try to meet the
request with as many machines as possible. If the number of available machines is below the minimum allowable
request, no reservation will be made.

A model of the flow of action in the reservation system is given in Figure 6.7. It is a chart illustrating the
actions of a user and the local handler. The boxes represent actions of the user. The circles show actions of the
local handler. Diamonds are conditions that the local handler checks beforb it takes further action. The symbols
ResPend, Slotopen, and NeedSync are variables that the local h-mdler maintains when managing the session. The
variable ResPend is set when the user has a reservation pending. The variable Slotopen is set if reservable slots are
still open. When either new requests are made, or old requests are cancelled, the variable NeedSync is set to
represent the need for synchronization with the coordinator. Normally, the local handler waits for a reservation
session to open. This is illustrated by the box labeled Wait.

When a session is opened by the user with the MakeReservation command, the local handler asks the
coordinator for system tables, and then waits for the user to choose one of the commands. Depending on the
command chosen, the local handler carries out the desired action.

Reservation can only be made when slots are available. Likewise, reservations can only be cancelled when
there is a pending reservation. When reservations are made or cancelled, the local handler must remember to
synchronize with the coordinator when the session is closed. If synchronization fails (the requests are rejected by
the coordinator), the user is notified. Successful synchronization allows the session to be closed. Otherwise, the user

50

Reservation System User Commands .,_,_..
MakeReservation

Open a session with the reservation system.

Display Start Stop
Display reservation and open slots between the given start
and stop times.

Make a reservation, between the start and stop time for the
number of stations specified by NumStations. Class is a
variable giving the type of reservation made. Optionally list
specific stations wanted. NumStations can vary between
lower and upper limits.

Reserve Start Stop NumStations Class [Specijic Stations]

Unreserve Start Stop NumStations
Remove a reservation, specified by start time, stop time, and
NumStations.

Check UserID
Check when is a reservation time.

Sync
Synchronize reservation updates with the coordinator without
ending the session with the reservation system.

Close
Close session with the reservation system. Send coordinator
the reservation request. Wait for acknowledgement of request.

-.-- Only with acknowledgment is the reseFation appxoved. -_.-- --
Table 6.5.

is notified and is given an opportunity to try something else. The Display and Check commands cause information
from the local handler’s tables to be shown to the user.

6.3.3. Reservation Coordinator’s Tables
Several tables are needed to implement the reservation system. Some tables are kept by the coordinator, some

by the local handers. A few tables are transferred between the coordinator and the handlers.
One table contains the state of the system, from which future reservation information can be derived. This

table is called the System Table, and is shown in Table 6.6. Several fields are needed. These include the name of
the workstations and their owners, as represented by the Station ID and Owner fields.

The system administrator decides the poItion of the total number of machines in a cluster that are reservable
for each hour of a day. Some of the workstations might be available for a specific time period because they were
manually donated to the processor bank. The system state includes the times that stations are donated manudly to
the processor bank. Manual donations can be given either gZobally and periodically. A global donation means that
stations are reservable for all times of the day, and for every day until the time specified by the field labeled Global
Donation. When people expect to be absent from work for several days, they donate their machines globalIy. Some
stations might be public resources without owners. These stations are always available for reservations. Stations H
and I of Table 6.6 are examples of this type of station. A station with a negative value for the global donation time
is not globally available. It might however be available on a periodic basis. A user might donate her machine

51

-.-(--J _I---.. j-r-t---+ NeedSync:=O

Respend: Reservation Pending
Slotopen: Slots are Open
Needsync: Needs Synchronization

Figure 6.7: Local Handler’s Flow Chart

52

A -1 M-SU 0:00-7:00 NA 6.3 1.0
 brown____--^ Sa-Su 22:OO-1000 brown 0.0
B 1159 2/13/87 T-SU 200-600 NA 2.0 4.0

Station ID Global Donation Periodic 1 state PO NP
Owner Periodic 2 Client PG

F-Su 23:OO-8:OO smith 3.0
M-F 23:00-5:00 AV 2.0 4.0
Sa-Su 2200-1000 none 1.0
-1 NA 7.0 10.0
-1

-1

-1

- . _ ~ ~ -

hvis ..---.- .-. .----

root 2.0 .-_.---
000 12/31/99 M-Su 000-2359 FRN 0 0

000 12/31/99 M-Su 000-23:59-- NR 0 0
smith 0 .--. .----. ---.-. - root

root none 0 _-.-.. --- --.----- .-.-.-I--- -- -

Sa-Su 23:OO-9:00 none 1.0

Sa-Su 23:OO-7:00 none 0.0

F-Su 21:OO-1000 ,_ brown 2.0
RES 1.0 5.0

ohon ----
-1 M-Sa 0:00-8:00 AV

0:OO 2/2/87--- M-F 2:00-9:00

-1 T-Th 19:00-8:00 FRN 3.0 6.0
- -- Charles

Monday through Friday (M-F) from the hours of 8PM and 6AM and from 8PM to ZOAM on Saturday through
Sunday (Sa-Su). For periodic donation, the stations are only donated for the hours listed. The times shown are the
starting and stopping times of periodic donations. The table shown supports two periodic donation periods on a
weekly basis.

The system table maintains the state of a workstation. The workstation’s state can be NA, AV, FRN, RES, and
NR. The AV state denotes the station is in the processor bank but is not allocated. NA says that the station is not in
the processor bank. The FRN state means the station is in the processor bank and allocated to a users, but not as a
time reservation. When a station is being used for a reservation, it is in the RES state. A station is in the NR state
when it is not-reserved but is available for a specilic reservation.

Other fields in the system table are labeled client, PO , PG , and NP. The client is the user, if any, currently
consuming cycles on the workstation. The other fields are used by the coordinator to make decisions controlling the
acceptance or rejection of reservation requests, by means of the free-market algorithm. Po represents the amount of
P money the station has accumulated through daily income. PG is the P money from capital appreciation.

Other tables kept by the reservation coordinator include die Accounting List, Reservation List, and the GZobaZ
Reservation Table. These are shown in Tables 6.7-6.9. The accounting list provides a level of indirection so that
several users can be associated with a particular machine. For example, the access to the reservation system for
group of graduate students might be linked to a single wokstation. As shown in Table 6.7,jones, smith, baker, and
davis are all Linked to station F. This link is established by the students’ supervisor. The students cooperate among
themselves to access their workstation’s share of reservation capacity. This feature controls a student’s activity so
that he will not dominate the system to the exclusions of others.

The global reservation table of Table 6.8 gives the reservation status for all machines for each time of the day.
It is kept in chronological order for each reservation interval (normally each interval is one hour). The global
reservation table has a mask that marks the state of the machines during this reservation interval. In general, the
mask consists of two bits for each machine in the system. The two bits represent the states Reserved Specifrc,
Reserved Non-Specijc, Not-Reserved, and Unreservable. A station is marked Reserved Specific if someone has

53

List Of Reservations
LD NumMachines Class Mask - Start sto

13:OO 2/5/87 '-75:OO &I87 smith 3 3 ...
13:OO 2/5/87 16:OO 2/5/87 jones 2 1 ...

2-_ , 8:OO 2/5/87 __,__ .._ 9:OO 2/7/87 baker 4

. Accounting List __
User ID
brown station A
-------.--

Olson station B
evans station C
Charles station D
mike station E
jones station F
smith stationF
baker station F
davis station F

Table 6.7.

specified this station for a reservation. A station is marked Reserved Non-Specific if the coordinator has allocated
this station to fill the requirements of a reservation, but this station has not been reserved explicitly to meet the
request. A station is marked Not-Reserved if it is reservable, but not yet allocated, and a station is marked
Unreservable if it is unavailable for reservations.

The reservation list of Table 6.9 gives all reservations made and who made them. It is kept in chronological
order on the basis of the reservation stopping times. Entxiqs are removed when reservations expire. The list shows
the ID of the user making the reservation, the number of machines allocated, and the starting and stopping time of
the reservation. The class enhy gives details on the type of reservations made. This field is either lst, 2nd, or 3rd
class as described by the free-market algorithm. A mask shows the specisc machines allocated. It is different from
the use of mask in the global reservation table: the mask is only valid for the particular reservation request. A
Reserved Specific enay in a mask of the reservation list means that the associated user wants the specified machine.
A Reserved Non-Specific entry means the coordinator has allocated the machine to meet the user's request, but any
reservable machine could satisfy the request.

i
Global Reservation Table
Time Mask
9:00 2/5/87 ...
1000 2/5/87 ...
11:OO 2/5/87 ...
7:OO 2/6/87 ...

---.._I---

--.--
Table6.8. .

54

6.3.4. Tables Used By The Local Handler
When a user opens a reservation session, the local handler on the user’s station requests tables from the

coordinator in order to conduct the reservation session. The local handler would receive a copy of the Reservation
List (“able 6.9) and the Global Reservation Table (Table 6.10). These tables are used by the local handler when the
user wants to know who has made reservations and which specific machines are reserved. The local handler also
receives information from the coordinator that is extracted from of the System Table (Table 6.6). The information
from the System Table helps create the Global Availability Table (Table 6.10). It informs the user of the amount of
capacity available in the processor bank

When a user makes a reservation request with its local handler, the local handler generates a Reservation
Request Table (Table 6.11). This table associates a Reservation ID with each request. The request is for either the
addition of a new reservation, or the cancellation of an old one. The table includes the user’s specified starting and
stopping times, their ID, and a lower and upper bound on the number of requested machines. A mask is associated
with the entry to request specific machines.

When the requests in the Reservation Request Table are synchronized with the coordinator, the coordinator
sends a Reservation Request Acknowledgement Table (Table 6.12) to the local handler. This table holds the
xeservation ID, the mask of specific machines request, and an entry that denotes either acceptance or rejection of the
reservation.

It is important to note that all operations on the reservation tables are made locally. At time of
synchronization, the Coordinator examines the modifications made, and then updates the master copy of the
Ieservation tables. The coordinator knows which local handers in the system have copies of the reservation tables.
It sends any updates to those local copies. When a local site has a copy of the reservation table and receives some
updates from the coordinator, the local site will make those updates in its local copy. If any of those new updates
conflict with the modification made to the local copy by the local user, then the user will be notified that their
reservation request will not be honored, and the reservation process will need to be repeated.

---.---....--..--.- -.--...---
Global Availability Table

k i e Numb&-?l --
9:00 2/5/87
10:OO 2/5/87 7
11:OO 2/5/87 6
1200 2/5/87 10
13:OO 2/5/87 10
14:OO 2/5/87 11
15:OO 2/5/87 12

Table 6.10.

.--.- -..- - --.-.---- ---- --
---__. -.-- Reservation Request Table

Res. Add Start StOP ID Lower Upper Class Mask
ID Delete

.,-- .______ .--_.-.- -___-----
-. .- - --.-----. ---

5 Add 15:OO 2/8/87 18:OO 2/8/87 jones 2 3 2 ...
19:OO 2/9/87 22:OO 2/9/87 , jones 4 4 2 ... 6 Add .-_--

Table 6.1 1.

55

---.-...--.. -
Reservation ID Mask Accept

... Add
Table 6.12.

6.4. Summary
It has recently become feasible to have computing environments consisting of clusters of powerful

workstations. The challenge presented to designers is to integate woxkstations into processor banks that can be
used globally by all users without conflicting with the principle that workstation owners are entitled to have
exclusive access to their machines. We present a design that gives users the ability to reserve partitions of a
processor bank with little interference experienced by workstations’ owners.

The system distributes the control of a reservation system to workstations by means of local handlers. The
local handlers are responsible for handling the interaction between users and reservation tables. A central
coordinator is used for synchronization of workstation reservation tables. The coordinator’s duties are kept simple
so that the coordinator could be physically located on one of the workstations in the system.

We presented a new reservation scheduling algorithm, called the free-market algorithm. This algorithm
enables heavy users to make reservations of available capacity without severely limiting access to capacity by light
users. The algorithm has the goal to minimize the amount of time that unreserved capacity exists and a user has
been denied a reservation. While giving a high quality of service to light users, the algorithm allows users to
reserve large amounts of capacity to conduct their experiments when such capacity is avaiIable.

CHAPTER 7

Conclusions and Future Research Directions

7.1. Conclusions
Clusters of private workstations have become prevalent in modem computing environments. These clusters

represent computing resources that were previously only available to users at institutions with supercomputers.
Nevertheless, the power in the clusters generally have been unused due to ineffective means of sharing among users.
The formation of a processor bank from a cluster of workstations makes the power of the cluster available to users.
Users expand their access to capacity by executing background jobs and by reserving partitions of workstations
from the processor bank. Background jobs are computationally intensive and have little interaction with their home
workstations. The reservation of partitions from the processor bank enable users to experiment with distributed
computations. The processor bank is a convenient vehicle for supplying the needed capacity to support these
activities.

Special attention must be given to the method of forming the processor bank since workstations are private
resources under the control of their owners. Workstations become sources of capacity for sharing in a processor
bank only when their owners donate them. It is feasible to implement a processor bank if workstations can be
donated for a large amount of time and for long intervals. In Chapter 3 we analyzed the availability of a group of
woIkstations and determined that they were available approximately 70% of the time observed. Many of the
available intervals were very long, which is ideal for sharing capacity to support background jobs. We observed
that as many as 40% of the workstations in a cluster were available for reservation at all times in Chapter 6, showing
the suitability of reserving the capacity of a processor bank.

We investigated the patterns of activity to develop a model of workstation availability as a stochastic process.
The availability and non-availability periods were recorded to determine the distribution of the periods. A model of
workstation availability was derived where we found that 2-stage and 3-stage hyperexponential distributions closely
fit the relative frequency distributions of observed patterns of the respective non-available and available intervals.

In order to take advantage of the massive amount of capacity available in a cluster of workstations, a system
was designed to form a processor bank and to schedule users’ jobs. Our design approach takes into account both the
background jobs that users submit and their reservation activities. Our goal is to provide a good quality of service to
users who want to share capacity, while causing little interference to the local activities of workstation owners.
Chapter 4 presented the portion of the design of a long term scheduling system for background jobs. An
implementation of the system, called Condor, hunts for capacity that is available for donation to the processor bank.

Some users of Condor try to acquire as much capacity as they can for long periods. These user have a large
number of jobs to execute because they explole problems that require a great amount of computational resources.
These heavy users could inhibit light users’ access to the processor bank. To accommodate the diverging demands
of the heavy and light users, capacity is allocated to local schedulers by a central coordinator according to the Up-
Down algorithm. The Up-Down algorithm enables heavy users to receive access to capacity without inhibiting light
users’ access to capacity. Without such controls, heavy users would dominate the system.

A profile of an implementation of the Condor scheduling system was given in Chapter 5. It showed that
Condor has been an extremely effective means of improving the productivity of our computing environment
Condor schedules background jobs at available workstations whose capacity otherwise would be unused. Due to
Condor’s checkpointing capability, jobs submitted to the system will eventually complete even if a remote location
fails.

Many jobs are well suited for scheduling by Condor because of the high leverage they obtain. Leverage is the
benefit a user gains by executing a job at the processor bank versus the support required for its execution at the
bank. We observed that the average leverage of jobs executed by Condor during one month was 1300. This means

56

57

that users sacrificed one minute of local workstation capacity to receive almost one day of CPU capacity from the
processor bank.

In the introduction of this thesis we asked whether we could provide a high quality of service in a highly
utilized cluster of workstations. Through the design of the Condor system and the results presented, this pending
question is answered affirmatively.

In Chapter 6 we showed the feasibility of reserving partitions of computers for users and extended the design
of the Condor system to include a reservation system. Included in the reservation system design is the presentation
of the free-market algorithm. The free-market algorithm used for allocating reservation capacity is designed to
enable heavy users to make reservations without severely limiting access to reservations by light users.

7.2. Future Research Directions

presented. The following are issues that we intend to study M e r .
New design, performance, and implementation issues should be explored to build upon the research we have

Sharing Capacity in a Wide Area Network
Clusters of workstations interconnected by local area netwoxks are common in university and industrial sites

throughout the world. A large number of these local area netwoxks are connected by wide area networks such as
NFSnet lMilIs87], Bitnet, and the Arpanet [Jennings86]. The interconnection of separate clusters of workstations
enables capacity sharing among users separated by long distances. Hierarchies of workstation clusters can be
formed for sharing. A processor bank at one location could serve background jobs submitted from a workstation
that is located many miles away. The sharing of capacity among separate clusters of workstations increases the
importance of prohibiting jobs from one cluster of workstations from monopolizing the processor bank of another
cluster of workstations. A group of users from a heavily utilized cluster of workstations could dominate the access
of another group of users to their local resources. Extensions to the XJp-Down algoxithm for managing capacity of
hierarchies of workstation clusters need to be considered. Questions concerning the cost of handling the placement
of remote jobs, checkpointing, and remote system calls should be investigated.

Protection Issues
The issue of computer viruses [Israe187, St011881 has become an impoxtant issue as cases of malicious use of

computer systems interconnected by local and wide area networks are brought to light. A computer virus is a
program that is disseminated among computer systems which has the purpose of tampering with the security and
resources of the computer systems. A user of the program that has been infected with a virus might not be aware
that the virus exists in the program. Since the Condor system allows users to execute jobs at remote computers, the
threat of Condor placing programs with viruses at remote sites is an important concern to workstation owners. The
system call handling routines of Condor need to be made secure, and the entire issue of protection in the Condor
system needs serious consideration.

Scheduling Parallel Computations on a Cluster of Workstations
The long term scheduling system described in this thesis.schedules sequential background jobs at partitions

allocated to users. The processor bank formed from a cluster of workstations can be an important source of capacity
for parallel computations. Partitions could be allocated for the execution of parallel computations on the basis of
availability. A size of a partition for a parallel computation can change as workstations are withdrawn fiom the
processor bank, or to accommodate other parallel computations.

Many problems arise when introducing parallel computations to a processor bank. For example, research
questions are open on how to place the threads of control of a parallel computation on multiple machines in a
partition, especially since machines in a partition can be preempted. Due to communication and service demand
characteristics of a group of parallel computations, a scheduler might wish to overlap parallel computations on a set
of machines. The criteria for evaluating the quality of service provided to users becomes an interesting challenge to
define. Problems such as these indicate that the scheduling of multiple paallel computations on a distributed
system, such as a prccessor bank, is expected to be an important area of research for many years to come.

58

Enhancements to Condor

Enhancements which we think are important to achieve in the near future are the following:
Several enhancements can be made to Condor which would improve the computing environment of its users.

A Simulation Laboratory with Deadline Constraints
From our study, we have found that good predictions of the amount of available workstation capacity in a

processor bank can be made. If we have knowledge of the amount of available capacity in the processor bank, and
can receive information of the amount of capacity required by jobs that execute at the processor bank, we can make
good predictions of when the jobs complete. A simulation job is an example of a type of job which one might have
knowledge of its processing demands. By combining knowledge of the processing demands of simulation jobs, and
the amount of capacity available to serve them, a simulation laboratory based on a processor bank could be built that
makes good predictions of when jobs complete. An enhanced predictor would allow deadlines to be attached to
jobs. Jobs would be scheduled to meet their proposed deadlines. Simulation jobs with urgent deadline constraints
could be given priority over jobs with less urgent deadlines. The problem of supporting a simulation laboratory with
the capability of predicting the completion time of jobs is one which we want to explore.

Scheduling Remote Capacity in a Heterogeneous System
Many workstation clusters contain machines of different sizes of memory, varying amounts of processing

power, and different instruction sets. Condor can be extended so that it manages a hetemgeneous processor bank.
An interesting question is how to choose the appropriate workstation for executing a job in a heterogeneous cluster.
The placement decision takes into account a job’s requirements and the usage patterns of each workstation that can
satisfy the job’s demand. A job that is compiled into separate binary files can execute at workstations of different
instruction sets. A pIoblem encountered when a job that has begun execution is that it cannot be moved to a
workstation of a different instruction sqt without losing all the work done on the first workstation. We intend to
study this placement problem encounteIed when sharing capacity in a processor bank composed of a heterogeneous
cluster of workstations.

Enhancing Condor with a Reservuzion Cupubility
Condor should be enhanced with the ability to reserve partitions in advance. From the implementation of a

reservation system, researchers could study the workload characteristics of reservation requests, and gain insight on
good performance criteria to evaluate reservation algorithms. This infoxmation would enable reservation
algorithms, such as the free-market algorithm, to be evaluated and tuned to fit the requirements of users of a
reservation system of a processor bank.

59

References

[Agrawal85]

[ArtSy861

Dorg831

LChandy75 J

[Chandy85a]

[Chandy85bl

Khang851

[Chavey86]

[Cheriton83]

[Craft831

R. Agrawal and A. E Ezzat, "Processor Sharing In NEST A Network Of Computer
Workstations," Proceedings of 1 st International Conjerence on Computer Workstations,
(November, 1985).

Y. Artsy, H.-Y. Chang, and R. Finkel, "Processes Migrate in Charlotte," Technical Report #655,
University of Wisconsin, (August, 1986).

A. Borg, J. Baumbach, and S. Glazer, "A Message System Supporting Fault Tolerance,"
Proceedings of the Ninth Symposium on Operating Systems Principles, pp. 90-99, (October, 1983).

K. M. Chandy, J. C. Browne, C. W. Dissly, W. R. Uhrig, "Analytic Models for Rollback and
Recovery Strategies in Data Base Systems," IEEE Transactions on Sofrware Engineering, SE-l(l),
pp. 100-110, (March, 1975).

K. M. Chandy and C. V. Ramamoorthy, "Rollback and Recovery Strategies for Computer
Programs," IEEE Transactions on Computers, C-21(6), pp. 546-556, (June, 1972).

K. M. Chandy and L. Lamport, "Distributed Snapshots: Determining Global States of Distributed
Systems," ACM Transactions on Computer Systeh, pp. 64-75, (February, 1985).

R-Y. Chang and M. Livny, "Priority in Distributed Systems," Proceedings of the Real-Time
Systems Symposium, (December, 1985).

D. Chavey, Private Correspondence, University of Wisconsin, Madison, Wisconsin, (December,
1986). The job was searching for the existence of certain kinds of combinatorial configurations
called Latin squares.

D. R. Cheriton, W. Zwaenepoel, "The Distributed V Kernel and its Performance for Diskless
Workstations," Proceedings of the Ninth Symposium on Operating Systems Principles, pp. 110-1 19,
(October, 1983).

D. H. Craft, "Resource Management in a Decentralized System," Proceedings of the Ninth
Symposium on Operating Systems Principles, pp. 11-19, (October, 1983).

LDanneberg851 R. B. Dannenberg and P. G. Hibbard, "A Butlex Process for Resource Sharing on Spice Machines,"
ACM Transoctioas on Office Informtion Systems, 3(3), pp. 234-252, (July, 1985).

[DeWitt87]

[Douglis87]

Eager86 J

D. J. DeWitt, R. Finkel, and M. Solomon, "The CRYSTAL Multicomputer: Design and
Implementation Experience," IEEE Transactions on Sofrware Engineering, pp. 953-956, (August,
1987).

F. Douglis and J. Ousterhout, "Process Migration in the Sprite Operating System," Proceedings of
the 7th International Conference of Distributed Computing System, Berlin, West Germany, pp.
18-25. (September 21-25,1987).

D. Eager, E. Lazowska, and J. Zahojan, "Adaptive Load Sharing in Homogeneous Distributed
Systems," IEEE Transactions on Sofware Engineering, SE-12(5), (May, 1986).

iTerguson881

Pe11ari721

Pemi78J

Prancez8q

[Gelenbe83

[Gelenbe791

[Hagmm861

[Israe187]

[James77

[Jennings]

Kay881

[Kleinrock75]

[Kleimock76]

60

D. Ferguson, Y. Yemini, and C. Nikolaou, "Microeconomic Algorithms for Load Balancing in
Distributed Computer Systems", Proceedings of the 8th International Cogerenee of Distributed
Computing Systems, San Jose, CA, pp. 491-499, (June 13-17,1988).

D. Ferrari, "Workload Characterization And Selection In Computer Performance Measurement,"
Computer 15(4) pp. 18-24 (July-August, 1972).

I). Ferrari, Computer Systems Peflormance Evaluation, Prentice-€%ill, Englewood Cliffs, NJ.
(1978). Chapter 5.

N. Francez, Fairness, Springer-Verlag, New Y ork, (1986).

E. Gelenbe, D. Finkel, S. K. Tripathi, "On the Availability of a Distributed Computer System with
Failing Components," Proceedings of the ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pp.6-13 (1985).

E. Gelenbe, "On the Optimal Checkpoint Interval," Journal of the ACM, 26(2), pp. 259-270, (Ap~il,
1979).

R. Hagmann, "Processor Server: Sharing Processing Power in a Workstation Environment,"
Proceedings of the 6th ZEEE Distributed Computing Conference, Cambridge, M A , pp. 260-267,
(May, 1986).

H. Israel, Tomputer Viruses: Myth or Reality", Proceedings of the 10th National Security
Conference, Baltimore, MD, (September, 21-24,1987).

M. L. James, G. M. Smith, and J. C. Wolfoxd, Applied Numerical Methods for Digital Computation,
Harper & Row, Publishers, pp. 285-287, (1977).

I). M. Jennings, L. H. Landweber, I. H. Fuchs, D. J. Farber, W. R. Adrion, "Computer Nehvorks for
Scientist", Science, pp. 943-950, (February 28,1986).

J. Kay and P. Lauder, "A Fair Share Scheduler," Communications of the ACM", 32(1) pp. 44-45
(January, 1988).

L. Kleinrock, Queueing Systems, Volume I:. Theory, John Wiley & Sons Publishing Company,
(1975).

L. Kleinrock, Queueing Systems, Volume 2: Computer Applications, John Wiley & Sons Publishing
Company, (1976).

[Kleinrock85] L. Kleinrock, "Distributed systems", Communications of the ACM", 28(11) pp. 1200- 1213 (January,
1985).

[Klingner81] C. Klingner, "FOCUS Scheduling: Philosophy and Algorithm", Computing Division Technical
Report, (June, 1981).

[Kobayashi8 11 K. Kobayashi, Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology, Addison-Wesley Publishing Company, (1981).

Weger881

[K urose8 51

&azowska81]

[Leland861

[Litzkow87a]

lJitzkow87b]

lJ,itzkow88]

[Livny82]

ILivny881

MIS871

Wutka87al

61

D. E. Knuth, The Art Of Computer Programming, Vol2 Seminumerical Methods, Addison-Wesley
Publishing Company, (198 1).

C. M. Krishna, IS. G. Shin, and Y-H. Lee, “Optimization Criteria for Checkpoint Placement,”
Communications of the ACM 27, pp. 1009-1012, (1984).

P. Krueger and M. Livny, “The Diverse Objectives of Distributed Scheduling Policies”,
Proceedings of the 7th International Conference of Distri&uted Computing Systems, Berlin, West
Germany, pp. 242-249, (September 21-25,1987).

P. Krueger and M. Livny, ”A Comparison of Preemptive and Non-Preemptive Load Balancing”,
Proceedings of the 8th International Conference of Distributed Computing Systems, San Jose,
California, pp. 123-130, (June 13-17,1988).

J. F. Kurose, M. Schwartz, and Y. Yemini, “A Microeconomic Approach to Decentralized
Optimization of Channel Access Policies in Multiaccess Networks”, Proceedings of the 5th
International Conference of Distributed Computing Systems, Denver, Colorado, pp. 70-77, (May
13-17.1985).

E. D. Lazowska, 13. M. Ixvy, G. T. Almes, M. J. Fischer, R. J. Fowler, S. C. Vestal, “The
Architecture of the Eden System“, Proceedings of the Eighth ACM Symposium on 0. S. Principles,
pp. 148-159, (December, 1981).

W. E. Leland and T. J. Ott, “Load-balancing Heuristics and Process Behavior,” Proc. of the 1986
ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems (May, 1986).

M. Litzkow, Private Correspondence, University of Wisconsin, Madison, Wisconsin, (April, 1987).
Phoenix, Arizona, (June, 1987).

M. Litzkow, “Remote Unk,” Proceedings of I987 Summer Usenix Conferences, Phoenix, Arizona,
(June, 1987).

M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor: A Hunter of Idle Workstations,” Proceedings
of the 8th International Conference of Distributed Computing Systems, San Jose, California, pp.
104-111, (June 13-17.1988).

M. Livny and M. Melman, “Load Balancing in Homogeneous Broadcast Distributed Systems,”
Computer Network Performance Symposium, pp.‘47-55, (April, 1982).

M. Livny, “DeNet - A Modula-2 Based Simulation Language,” Computer Sciences Department
Technical Report, University of Wisconsin, Madison, Wisconsin (in preparation).

D. L. Mills, H-W. Braun, “The NFSNET Backbone Network“, Proceedings of the ACM SigComm
’87 Workshop, Stowe, Vermont, pp. 191-196, August 11-13,1987.

M. W. Mutka and M. Livny, “Scheduling Remote Processing Capacity in a Workstation-Processor
Bank Network, Proceedings of the 7th International Conference of Distributed Computing
Systems, Berlin, West Germany, pp. 2-9, (September 21-25,1987).

62

Mutka87bI M. W. Mutka and M. Livny, "Profiling Workstations' Available Capacity for Remote Execution",
Performance '87, Proceedings of the 12th IFIP WG 7.3 Symposium on Computer Performance,
Brussels, Belgium, pp. 529-544, (December 7-9,1987).

[Needham82] R. M. Needham and A. J. Herbert, The Cambridge Distributed Computing System, Addison-Wesley
Publishing Company (1982).

INichols87] D. A. Nichols, YJsing Idle Workstations in a Shared Computing Environment", Proceedings of the
1 l th Symp. on Operating System Principles, pp.5-12, (November, 1987).

[Ousterhout88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch, "The Sprite
Network Operating System," Computer, pp. 23-36, (February, 1988).

[PopekS 1 J

Lpowell83al

[Powell83b]

Wtchie781

[Sandon871

[S tankovic841

[S toll881

IStumm881

[Theher851

[T1ivedi82]

Ivnixl

G. Popek, B. Walker, J. Chow, D. Edwards, and C. Kline, "LOCUS: A Network Transparent
Highly Reliable Distributed System," Proceedings of the Eighth Symposium on Operating Systems
Principles, (December, 1981).

M. L. Powell and B. P. Miller, "Process Migration in Demos/MP," Proceedings of the Ninth
Symposium on Operating Systems Principles, pp. 110-,119, (October, 1983).

M. L. Powell and D. L. Presotto, "Publishing: A Reliable Broadcast Communication Mechanism,"
Proceedings of the Ninth Symposium on Operating Systems Principles, pp. 100-109, (October,
1983).

D. M. Ritchie and K. Thompson, "The UNIX Timesharing System", Bell Labs Technical Journal,
57(6) (July, 1978).

P. Sandon, "Learning Object-Centered Representations," Ph. D. Thesis, University of Wisconsin,
Madison, Wisconsin, (August, 1987).

J. A. Stankovic, "Simulations of Three Adaptive Decentralized Controlled, Job Scheduling
Algorithms," Computer Networks, 8(3), (June, 1984).

C. Stoll, "Stallcing the Wily Hacker," Communication of the ACM, 31(5), pp. 484-496, (May, 1988).

M. Stumm, "The Design and Implementation of a Decentralized Scheduling Facility for a
Workstation Cluster," Proceedings of the 2nd IEEE Conference on Computer Workstations, pp. 12-
21, (March, 1988).

M. M. Theimer, K. A. Imtz, and D. R. Cheriton, "Preemptable Remote Execution Facilities for the
V-System," Proceedings of the 10th Symp. on Operating Systems Principles, pp. 2-12, (December,
1985).

K. S. Trivedi, Probability And Statistics Wilh Reliability, Queueing, And Computer Science
Applications, Prentice-Hall, Englewood Clif fs , NJ., (1982). pp. 129-130.

Unix 4.3BSD System Call Manual.

63

Walker83 J

IWang851

mirth831

[Young741

[Zhou871

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel, "The LOCUS Distributed Operating
System," Proceedings of the Ninth Symposium on Operating System Principles, (October, 1983).

Y-T Wang and R. J. T. Morris, "Load Sharing in Distributed Systems," IEEE Transactions on
Computers, C-34(3), (March, 1985).

N. Wirth, Programming in Modulu-2, Springer-Verlang (1983).

J. W. Young, "A First Order Approximation to The Optimum Checkpoint Interval," Communication
ofthe ACM, 17(9), pp. 530-531, (September, 1974).

S. Zhou, "A Trace-Driven Simulation Study of Dynamic Load Balancing," University Of California
Technical Report UCB/CSU 87/305, (March, 1987).

