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Abstract

We describe MW – a software framework that allows
users to quickly and easily parallelize scientific computa-
tions using the master-worker paradigm on the computa-
tional grid. MW provides both a “top level” interface to ap-
plication software and a “bottom level” interface to exist-
ing grid computing toolkits. Both interfaces are briefly de-
scribed. We conclude with a case study, where the necessary
Grid services are provided by the Condor high-throughput
computing system, and the MW-enabled application code is
used to solve a combinatorial optimization problem of un-
precedented complexity.

�
This work was supported in part by Grants No. CDA-9726385 and

CDA-9623632 from the National Science Foundation.

1 Introduction

By its very definition, the Grid [12] is a powerful and
complex computing environment. In order to help harness
its power, a large number of different programming efforts
are underway that seek to provide robust middleware ser-
vices [11] [16] [19] [10] [3] [24]. For users hoping to
parallelize a large, single, coordinated application over the
Grid, the overhead required to learn and assemble these
Grid-enabling software components could (at this stage of
their implementation) be discouraging. Thus, to enable a
larger community of users to build applications running in
parallel on the Grid, higher-level programming frameworks
leveraging existing Grid services software are needed. Net-
Solve [5] provides an API to access and schedule Grid re-
sources in a seamless way but it is not suited for writing
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non-embarrassingly parallel codes. Everyware [25] is a
heroic effort that shows that an application can draw compu-
tational power transparently from the Grid, but Everyware
is not abstracted as a programming tool at this stage of its
implementation. CARMI/Wodi [22] was a useful program-
ming interface for developing master-worker based parallel
applications to run on the Grid, but it was strongly tied to
the Condor-PVM [21] software tool, limited to applications
with fixed work cycles, and finally abandoned.

Our abstract programming framework MW is a com-
plete, easy to use tool whereby users can distribute large,
diverse, scientific computations in a Grid computing envi-
ronment. The focus is on parallel applications with weak
synchronization and reasonably large grain size that can be
fit into a master-worker paradigm without significant loss of
efficiency. To parallelize such algorithms on Grid comput-
ing platforms, users must address issues such as fault tol-
erance, task scheduling, and interprocess communication.
By handling some of these issues automatically and expos-
ing others, MW provides an API for rapidly implementing
Grid-enabled master-worker algorithms. MW also abstracts
an Infrastructure Programming Interface (IPI) such that it
can be ported to use various Grid software toolkits with-
out any changes from the application developer. MW has
been used in the MetaNEOS project [20] to implement effi-
cient parallel numerical optimization algorithms with com-
plex control structures. The marriage of efficient algorithms
with Grid computational resources has allowed the solution
of problems of record-breaking sizes [2] [4] [17]. Other
authors have also focused on providing support for master-
worker applications in a dynamic computing environment;
Piranha [13] and Bayanihan [23] are notable examples.

The paper is organized as follows. In Section 2, we intro-
duce MW, and we describe the interfaces to both application
software and Grid infrastructure software. Section 3 dis-
cusses additional features of MW that help developers build
efficient and robust applications. Section 4 presents a case
study where the Grid services are provided by Condor[19],
and the application code is used to solve a combinatorial
optimization problem of unprecedented complexity. Con-
clusions about this line of research are also given.

2 MW

MW is a software framework that allows a user to easily
parallelize a master-worker application on Grid resources.
MW is a set of C++ abstract classes providing interfaces to
both application programmer and Grid-infrastructure pro-
grammer. To Grid-enable an application with MW, the ap-
plication programmer must re-implement a small number
of virtual functions. Likewise, to port the MW framework
to a new Grid software toolkit, the Grid infrastructure pro-
grammer need only re-implement a small number of virtual

functions.
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To distribute a master-worker computation on the Grid,
we at least require software that can perform

� Communication – Portions of the computation and re-
sults must be passed between master and workers,

� Resource Management – The state of the available
computational resources on the Grid must be known.

Our usage of the term resource management is a bit
broader than most. In this context, resource management
encompasses

� Resource request and detection – Asking for and iden-
tifying available processors,

� Infrastructure querying – Determining information
about processors and the interconnections between
them,

� Fault-detection – Noticing when processors leave the
computation,

� Remote execution – Starting processes on remote ma-
chines when they become available.

There are a number of tools being built that provide
these basic services, as well as features necessary to other
Grid applications (such as security and remote data access).
The Infrastructure programming interface (IPI) abstracts
the core communication and resource management require-
ments for master-worker applications into the MWRM-
Comm class. To allow MW applications to interact with ex-
isting Grid-services software, a concrete instance of the ab-
stract MWRMComm class is derived, where the function-
ality required by MWRMComm is provided by the services
in the specific Grid software toolkit.

2.1.1 Communication

The sole communications functionality required by
MWRMComm is that point-to-point messages can be sent
between the master and the worker processes. As such,
MWRMComm has the (pure) virtual functions:

� pack(<type> array, int size)

� unpack(<type> array, int size)

� send(int to whom, int message tag)

� recv(int from whom, int message tag)
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All messages must be buffered by the MWRMComm
implementation, and the send() function should be imple-
mented as a nonblocking call. These design criteria are due
to the fact that processors may disappear during the course
of the computation. Since the Grid is heterogeneous, the
pack() and unpack() functions must account for dif-
ferent native data types. In MWRMComm, the recv()
routine should be implemented as a blocking function call,
for reasons described in Section 2.1.2.

2.1.2 Resource management

The application programmer may make a resource requests
by calling the function
MWRMComm::set target num workers( int
num workers ). It is up to the MWRMComm im-
plementation to make appropriate resource requests in
an attempt to garner this number of workers for the
master-worker application, and also to make new requests
if participating workers leave the computation.

An important design decision for MW is that both
communication and resource management functionality is
included in a common class. MW relies on an up-
call mechanism from the resource management software
to signal changes in the state of the computational re-
sources. The changes are signalled as messages received
by the master with specific tags such as HOSTADD and
HOSTDELETE. Thus, an implementation of the (block-
ing) MWRMComm::recv() function on the master process
should not only test for incoming messages from workers,
but also check for changes to the state of the existing com-
putational resources and report these changes as messages.

For example, when a HOSTADD message is received,
the MWRMComm specification requires that the function
call MWRMComm::start worker(MWWorkerID *w)
will (attempt to) start a remote process on the machine that
has been added, and will assign a unique process identi-
fier in the MWWorkerID. When a HOSTDELETE message
is received, MWRMComm requires that the unique process
identifier be packed in the message buffer.

A final important function in the MWRMComm class is
MWRMComm::get worker info( MWWorkerID *w
). This function uses underlying Grid services to populate
the MWWorkerID class with “useful” information about
the remote processor. Data members of the MWWorkerID
class include the architecture, operating system, amount of
memory, disk space, and speed of the remote machine.

Clearly, this is not the entire specification of the
MWRMComm class. Indeed, we consider the IPI that we
have laid out in MW to be a work in progress. The inter-
face will likely change, and additional functionality will be
added as warranted. Due the layered design of MW, appli-
cation programs will be shielded from the interface changes.

2.1.3 Example MWRMComm Implementations

There are currently two implementations of the MWRM-
Comm class. Both rely on the resource management fa-
cilities provided by the Condor high-throughput computing
system [19]. As such, the MWDriver must deal with many
processor faults, since the default Condor behavior is to va-
cate a running process when the owner of the machine re-
turns.

In one implementation, communication is done with
PVM, and in the other, communication is done by using
Condor’s remote I/O mechanism [18] to write a series of
shared files. Preliminary plans are being made for a port
to the Globus software toolkit [11]. Table 1 highlights how
the Grid service software provides (or could provide) the
functionality required by MWRMComm.

The additional software layer acts as a filter, hiding com-
plexity of Grid service software, but also potentially hiding
underlying functionalityand knowledge of how the commu-
nication and resource management services are performed.
A significant challenge is how to impart this functionality
and knowledge to the application programmer, while still
presenting a simple interface. MW errs on the side of sim-
plicity, with the thought that additional Grid service func-
tionality will be made available to the application program-
mer as needed.

An advantage of the layered approach is that some ad-
vances in Grid services software can be leveraged by the
application programmers to increase application perfor-
mance. For our Condor-based MWRMComm implementa-
tions, two examples include flocking [9], where geograph-
ically distributed Condor pools are conceptually linked as
one, and glide-in [8], where processors from an existing
Globus resource can be added to a Condor pool on a tempo-
rary basis. These advanced Condor features are used by the
application presented in Section 4.
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In a companion work [15], we argue that many scientific
applications can be parallelized quite effectively for a Grid
environment by using the master-worker paradigm. Our
specific experience is with algorithms for solving numerical
optimization problems and many of these algorithms share
the following characteristics:

� Incremental Data Requirement,

� Weak Synchronization,

� Dynamic Grain Size.

The MW API was designed to provide an interface that
would be easy for application programmers to use, but
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Services Condor-
PVM Condor-Files Globus

Communi-
cation

Messages
buffered and
passed
through
PVM
pvm pk()
in XDR
format.

Messages
passed
through
shared
worker files
via Condor
Remote I/O.

Messages
passed and
handled via
Nexus
nexus
send rsr().

Resource
Request
and
Detection

Requests
formulated
with Condor
Class Ads,
served by
Condor
matchmak-
ing, and
detection is
notified by
pvm
notify().

Requests
formulated
with Condor
Class Ads,
served by
Condor
matchmaking
and detected,
by checking
Condor logs.

Requests in
Globus RSL
handled and
queued by
GRAM via
gram
client job
request().

Info
Querying

Information
collected via
condor status
command

Information
collected via
condor status
command

Information
queried from
MDS via
LDAP
protocol.

Fault
Detection

Faults
detected by
Condor-
PVM and
passed
through
pvm
notify().

Faults
detected by
checking
Condor logs.

Faults
detected by
HBM local
monitors are
collected by
HBM data
collector
agent running
on master.

Remote
Execution

Job started
by pvm
spawn().

Job started
by
condor startd
daemon on
remote
resource.

Job started by
GRAM when
requests are
served.

Table 1. Summary of How Grid Services are
Provided

also would allow these algorithmic characteristics to be ex-
ploited to build efficient master-worker applications.

In order to parallelize an application with MW, the appli-
cation programmer must re-implement three abstract base
classes – MWDriver, MWTask, and MWWorker.

2.2.1 MWDriver

To create the MWDriver, the user need only implement four
pure virtual functions:

� get userinfo(int argc, char *argv[])
– Processes arguments and does basic setup.

� setup initial tasks(int *n, MWTask
***tasks) – Returns a set of tasks on which the
computation is to begin.

� pack worker init data()– Packs the initial
data to be sent to the worker upon startup. Use of this
function allows the application to exploit an incremen-
tal data requirement.

� act on completed task(MWTask *task)
– Is called every time a task finishes. Some ac-
tions that the user could take include adding more
tasks or making calculations based on the result
of the task. Tasks are added by calling the MW-
Driver::addTasks(MWTask **tasks) base
method.

By carefully deciding on actions to take in the
act on completed task() method, the user can take
advantage of weak synchronization inherent in the parallel
application.

The MWDriver manages a set of MWTasks and a set of
MWWorkers to execute those tasks. The MWDriver base
class handles workers joining and leaving the computation,
assigns tasks to appropriate workers, and rematches run-
ning tasks when workers are lost. All this complexity is
hidden from the application programmer. Further, the MW-
Driver offers more advanced functionality, as explained in
Section 3.

2.2.2 MWTask

The MWTask is the abstraction of one unit of work. The
class holds both the data describing that task and the re-
sults computed by the worker. By deciding on the size
of the task, the application can use dynamic grain size to
its advantage, easing contention at the master process, and
increasing parallel efficiency. The derived task class must
implement functions for sending and receiving its data be-
tween the master and worker. The names of these functions
are self-explanatory: pack work(), unpack work(),
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pack results(), and unpack results(). These
functions will call associated pack() and unpack()
functions in the MWRMComm class.

2.2.3 MWWorker

The MWWorker class is the core of the worker executable.
Two pure virtual functions must be implemented:

� unpack init data()– Unpacks the initial-
ization information passed in the MWDriver’s
pack worker init data().

� execute task( MWTask *task )– Given a
task, computes the results.

After doing some basic initialization, the MWWorker
sits in a simple loop. Given a task, it computes the re-
sults, reports the results back, and waits for another task.
The loop finishes when the master asks the worker to end.
It is an easy matter to bring in other libraries, such as
highly optimized FORTRAN routines to the worker. They
can be linked with the C++ code, and called by the exe-
cute task() function.

3 Additional Functionality

A number of other useful features that are available
through methods in the base MWDriver class.

8���� 9;:1���=<>$(+�)?����)4�10

Because the MWDriver reschedules tasks when the pro-
cessors running these tasks fail, applications running on
top of MW are fault tolerant in the presence of all pro-
cessor failures—except for the master processor. In order
to make computations fully reliable, MWDriver offers fea-
tures to logically checkpoint the state of the computation
on the master process on a user-defined frequency. To en-
able checkpointing, the user must implement functions for
writing and reading the state contained in its application’s
master and task classes. Use of the master checkpoint facil-
ity is demonstrated in Section 4.
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The heterogeneous and dynamic nature of the Grid
makes application performance difficult to assess. Standard
performance measures such as wall clock time and cumula-
tive CPU time do not separate application code performance
from computing platform performance. By normalizing the
CPU time spent on a given task with the performance of
the corresponding worker, the MWDriver aggregates time

statistics that are comparable between runs. The normal-
ization factor can be based on vendor information such as
MIPS or KFLOPS, if this information is available from the
underlying Grid service software. Alternatively, MW al-
lows the user to register an application specific benchmark
task that is sent to all workers that join the computational
pool. The speed at which the benchmark task is completed
is used as the normalization factor.

If we make the following definitions:
�JL(M*N�O – Worker N , M*NQP%R&O , performance normalization

factor,
�TSUM�N*O – Wall clock time that worker N is available,
�JVWMYXZO – Index of worker who solved task X , MYXUP;[/O ,
�A\]M^X�O – CPU time spent in solving task X ,
�J_ – Wall clock time,
� T – Cumulative worker CPU time: `ba�c�d \]M^X�O .

We can then define the following statistics:
�be – Normalized cumulative time :

egf.h
a�c�d

L(M*VWMYXZO�O � \]MYXZOji
�Ak – Equivalent Pool Performance :

kgf `�l�cnm L(M�N*O � SUM*N�O
` l*cnm SUM�N*O i

�Ao – Average number of workers :

opf `�l�cnm SUM*N�O_ i
�Jq – Parallel efficiency :

qWf ` a�c�d \]M^X�O
` l*cnm SUM�N*O�r

Table 3.2 shows the variations of performance statistics
between runs of a Grid-enabled application (presented in
Section 4). The same problem instance was solved eight
times, each time on a different set of processors. A user-
defined benchmark task was used to define the normaliza-
tion factor.

As expected, the statistics exhibit large variance of _
and T due to the dynamic and heterogenous nature of the
computing platform. However, there is little variance ofe , which can therefore be used to do comparisons between
runs and assess the application performance. Use of the nor-
malized performance measurement has proved invaluable
for tuning parameters of various Grid-enabled applications,
like the one presented in Section 4.
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Mean Std. Dev. Min Max_ 915 1019 489 1780
T 22182 27900 8844 37671e 5864 341 5739 6054k 7.27 7.16 3.2 12.4o 27.5 21.7 16 39q 0.87 0.07 0.84 0.92

Table 2. Mean, Variance and Extreme Value on
8 different runs.
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Internally, the MWDriver manages a list of workers and
a list of tasks. Task scheduling is accomplished by assign-
ing the first task in the task list to the first idle worker in the
worker list. In MWDriver, there is an interface to specify
that the task list be ordered by a user-defined key, ensur-
ing that “important” tasks are performed first. The worker
list may be similarly ordered, so that “good” machines are
the first to receive tasks. By default, the worker list is or-
dered using the machine KFLOPS information (if provided
by the Grid software implementing MWRmComm), or by
the benchmark factor if the user has registered an applica-
tion specific benchmark task.

While this is a rudimentary scheduling algorithm, it has
proven sufficient for all applications implemented to date
with MW. The applications have had no need to match spe-
cific tasks with specific workers. Also, the applications to
date have not been data-intensive, so use of advanced ser-
vices such as the Network Weather Service [26] to improve
scheduling has not been warranted.

4 Application to Combinatorial Optimiza-
tion

MW has been used in the MetaNEOS project [20] to im-
plement several grid-enabled parallel optimization solvers
[7] [14] [17]. One solver has been specialized to solve the
quadratic assignment problem (QAP) [6]. Despite its sim-
ple statement—to minimize the assignment cost of w facil-
ities to w locations—it is extremely difficult to solve even
modest sized instances of the QAP. Problems with wAxgy�z
are difficult; problems with wAx|{	z have not even been at-
tempted yet. By embedding a new relaxation technique [1]
into a branch-and-bound framework, and implementing the
resulting solver within MW, we managed to solve what is
regarded by experts in the field as the most difficult QAP
instance (size w =27) to provable optimality [2].

In order to use the computational resources with maxi-
mum efficiency, the parallelization strategy of the branch-

and-bound tree search has been carefully designed. Issues
such as the proper ordering of the task list and the selection
of the grain size were carefully considered in order to mini-
mize communication overhead and contention at the master
process without introducing large parallel search anomalies.
By using the intuitive MW API, implementing the parallel
version of the sequential branch-and-bound code was ex-
tremely simple and fast. The MW-ized QAP application
code was compiled to use the Condor/File-Based MWRM-
Comm implementation.

The computational pool was composed of machines
from the Condor pool and a Linux cluster at the Univer-
sity of Wisconsin, a flocked Condor pool at the Univer-
sity of New Mexico, a flocked Condor pool at the Na-
tional Institute for Nuclear Physics (Bologna, Italy), and the
SGI/Origin2000 at Argonne National Laboratory acquired
via Globus through the glide-in mechanism. Further infor-
mation about the computational pool is summarized in Ta-
ble 3.

(Peak)
Number Arch-OS Where How GFLOPS

179 INTEL/LINUX Wisc Main Pool 13.88
34 INTEL/LINUX UNM Flocked 1.12
64 INTEL/LINUX INFN Flocked 2.76
150 INTEL/SOLARIS Wisc Main Pool 7.64
35 SUN/SOLARIS Wisc Main Pool 1.44
8 SUN/SOLARIS INFN Flocked 0.38

32 SGI/IRIX Argonne Glide-in 3.84
502 - - - 31.06

Table 3. The Computational Pool.

Figure 1 depicts the cumulative evolution of the num-
ber of machines of each type during our run. A few events
are of note. At 11:30AM a glide-in request was made for
32 SGI processors on Argonne’s Origin for a period of 12
hours. (The reader can note these machines appear in Fig-
ure 1 around this time). At 6:30 PM, the Condor scheduling
daemon was reconfigured to allow flocking with the INFN
Condor pool in Bologna, Italy. The job was stopped manu-
ally at 11PM, and we restarted it at 8AM from the master’s
checkpoint file, as explained in Section 3.1. When restarted,
we did not place a new glide-in request.

In all, 87,036 tasks, each consisting of a number of nodes
of the branch and bound tree, were sent from the master to
workers. It is impossible to predict the number of nodes
in a task, resulting in a wide variance in task grain sizes.
The task grain sizes varied from 0.01 CPU seconds to over
1200 CPU seconds, with a mean value of 190.6 seconds.
567,793,866 nodes were explored in solving the problem.
Figure 2 shows a moving average of the number of nodes
evaluated per second. Over the course of the computation,
we used an average of 211.3 machines and with a peak of
285. The parallel efficiency obtained during the run was
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q}f z r�~ { . The average performance of the computational
pool was 195 times the performance of one of the dedicated
Linux nodes. Neglecting parallel search anomalies, the so-
lution of this problem in sequential would have required
around over 177 days of computation with the sequential
algorithm on a dedicated Linux node. The marriage of Grid
resources with the advanced algorithm allowed the solution
of a heretofore unsolved problem.
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5 Conclusions and Future Work

MW has allowed algorithm developers to bring together
a large number of heterogeneous, geographically dispersed
resources to solve extremely large problems. The simple
API of MW provided a convenient programming model
enabling the user to focus on algorithmic features without
worrying on the details of setting up computations, and the
IPI has allowed a better portability of the resulting code to
different grid computing environments.

It is the continued goal of this work to draw further ap-
plication developers by providing a simple interface, access
to Grid resources, and useful functionality at no expense to
the application code. We also wish to entice Grid infras-
tructure developers to support MW by providing a simple,
well-defined interface, and interesting and useful applica-
tions. There is still work to be done to turn these goals into
realities.

Further information about MW is available from

http://www.cs.wisc.edu/condor/mw
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