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Abstract

We present NeST, a flexible software-only storage ap-
pliance designed to meet the storage needs of the Grid.
NeST has three key features that make it well-suited for
deployment in a Grid environment. First, NeST provides
a generic data transfer architecture that supports multi-
ple data transfer protocols (including GridFTP and NFS),
and allows for the easy addition of new protocols. Second,
NeST is dynamic, adapting itself on-the-fly so that it runs
effectively on a wide range of hardware and software plat-
forms. Third, NeST is Grid-aware, implying that features
that are necessary for integration into the Grid, such as
storage space guarantees, mechanisms for resource and
data discovery, user authentication, and quality of service,
are a part of the NeST infrastructure.

1. Introduction

Data storage and movement are of increasing impor-
tance to the Grid. Over time, scientific applications have
evolved to process larger volumes of data, and thus their
overall throughput is inextricably tied to the timely de-
livery of data. As the usage of the Grid evolves to
include commercial applications [21], data management
will likely become even more central than it is today.

Data management has many aspects. While perfor-
mance has long been the focus of storage systems re-
search, recent trends indicate that other factors, includ-
ing reliability, availability, and manageability, may now be
more relevant [29]. In particular, many would argue that
manageability has become the dominant criterion in evalu-
ating storage solutions, as the cost of storage management
outweighs the cost of the storage devices themselves by a
factor of three to eight [23].

One potential solution to the storage management
problem is the use of specialized storage devices known
as appliances. Pioneering products such as the filers of
Network Appliance [15] reduce the burden of manage-
ment through specialization; specifically, their storage ap-
pliances are designed solely to serve files to clients, just as
a toaster is designed solely to toast. The results are con-
vincing: in field testing, Network Appliance filers have

been shown to be easier to manage than traditional sys-
tems, reducing both operator error and increasing system
uptime considerably [20].

Thus, storage appliances seem to be a natural match
for the storage needs of the Grid, since they are easy to
manage and provide high performance. However, there
are a number of obstacles that prevent direct applica-
tion of these commercial filers to the Grid environment.
First, commercial storage appliances are inflexible in the
protocols they support, usually defaulting to those com-
mon in local area Unix and Windows environments (e.g.,
NFS [38] and CIFS [30]). Therefore, filers do not readily
mix into a world-wide shared distributed computing in-
frastructure, where non-standard or specialized Grid pro-
tocols may be used for data transfer. Second, commercial
filers are expensive, increasing the cost over the raw cost
of the disks by a factor of ten or greater. Third, storage
appliances may be missing features that are crucial for in-
tegration into the Grid environment, such as the ability to
interact with larger-scale global scheduling and resource
management tools.

To overcome these problems and bring appliance tech-
nology to the Grid, we introduce NeST, an open-source,
user-level, software-only storage appliance. As com-
pared to current commercial storage appliances, NeST has
three primary advantages: flexibility, cost, and Grid-aware
functionality. We briefly discuss each of these advantages
in more detail.

First, NeST is more flexible than commercial storage
appliances. NeST provides a generic data transfer archi-
tecture that concurrently supports multiple data transfer
protocols (including GridFTP [5] and NFS). The NeST
framework also allows new protocols to be added as the
Grid evolves.

Second, because NeST is an open-source software-
only appliance, it provides a low-cost alternative to com-
mercial storage appliances; the only expenses incurred are
the raw hardware costs for a PC with a few disks. How-
ever, because NeST is a software-based appliance, it in-
troduces new problems that traditional appliances do not
encounter: NeST must often run on hardware that it was
not tailored for or tested upon. Therefore, NeST contains
the ability to adapt to the characteristics of the underlying
hardware and operating system, allowing NeST to deliver
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Figure 1. NeST Software Design. The diagram depicts NeST and its four major components: the protocol layer, the
storage manager, the transfer manager, and the dispatcher. Both control and data flow paths are depicted.

high performance while retaining the ease of management
benefits of storage appliances.

Finally, NeST is Grid-aware. Key features, such as
storage space guarantees, mechanisms for resource and
data discovery, user authentication, and quality of service,
are a fundamental part of the NeST infrastructure. This
functionality enables NeST to be integrated smoothly into
higher-level job schedulers and distributed computing sys-
tems [11, 13, 14, 31, 36].

The rest of this paper is organized as follows. Section 2
describes the overall design of NeST. The protocol layer
which mediates interaction with clients is described in
Section 3. Section 4 describes the transfer manager which
is responsible for monitoring and scheduling concurrency,
and Section 5 describes the storage layer which manages
the actual physical storage of the system. An example us-
age of NeST is traced within Section 6, an evaluation is
presented in Section 7, comparisons to related work are in
Section 8, and conclusions are drawn in Section 9.

2. Design Overview

As a Grid storage appliance, NeST provides mecha-
nisms both for file and directory operations as well as
for resource management. The implementation to pro-
vide these mechanisms is heavily dependent upon NeST’s
modular design, shown in Figure 1. The four major com-
ponents of NeST are its protocol layer, storage manager,
transfer manager and dispatcher. We first briefly examine
each of these components separately; then we show how
they work together by tracing an example client interac-
tion.

2.1. Component Descriptions

The protocol layer in NeST provides connectivity
to the network and all client interactions are mediated
through it. Clients are able to communicate with NeST
with any of the supported file transfer protocols, includ-
ing HTTP [10], a restricted subset of NFS [38], FTP [25],
GridFTP [1], and Chirp [34], the native protocol of NeST.
The role of the protocol layer is to transform the specific
protocol used by the client to and from a common request
interface understood by the other components in NeST.
We refer to this as a virtual protocol connection and de-
scribe it and the motivation for multiple protocol support
in Section 3.

The dispatcher is the main scheduler and macro-
request router in the system and is responsible for con-
trolling the flow of information between the other com-
ponents. It examines each client request received by the
protocol layer and routes each appropriately to either the
storage or the transfer manager. Data movement requests
are sent to the transfer manager; all other requests such as
resource management and directory operation requests are
handled by the storage manager. The dispatcher also peri-
odically consolidates information about resource and data
availability in the NeST and can publish this information
as a ClassAd [26] into a global scheduling system [34].

The storage manager has four main responsibilities:
virtualizing and controlling the physical storage of the
machine (e.g., the underlying local filesystem, raw disk,
physical memory, or another storage system), directly exe-
cuting non-transfer requests, implementing and enforcing
access control, and managing guaranteed storage space in
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the form of lots. Lots are discussed in more detail in Sec-
tion 5.

Because these storage operations execute quickly (in
the order of milliseconds), we have chosen to simplify the
design of the storage manager and have these requests ex-
ecute synchronously. It is the responsibility of the dis-
patcher to ensure that storage requests are serialized and
executed at the storage manager in a thread-safe schedule.

The transfer manager controls data flow within NeST;
specifically, it transfers data between different protocol
connections (allowing transparent three- and four-party
transfers). All file data transfer operations are managed
asynchronously by the transfer manager after they have
been synchronously approved by the storage manager.
The transfer manager contains three different concurrency
models, threads, processes and events, and schedules each
transfer using one of these models. Scheduling policies,
such as preferential scheduling, and scheduling optimiza-
tions are the responsibility of the transfer manager and are
discussed in Section 4.

2.2. An Example Client Interaction

We now examine how these four components function
together by tracing the sequence of events when interact-
ing with a client. In this example, we consider the case
when a client first creates a new directory (i.e., a non-
transfer request) and then inserts a file into that directory
(i.e., a transfer request).

When the client initially connects to NeST with the
request to create the directory, the dispatcher wakes and
asks the protocol layer to receive the connection. Depend-
ing upon the connecting port, the protocol layer invokes
the handler for the appropriate protocol. The handler then
authenticates the client, parses the incoming request into
the common request format, and returns a virtual protocol
connection to the dispatcher.

The dispatcher then asks the storage manager to cre-
ate the directory. After checking for access permissions,
the storage manager synchronously creates the directory
and sends acknowledgment back to the client through the
dispatcher and the virtual protocol connection.

At this point, the dispatcher assumes responsibility for
the client and listens for further requests on its channel.
After the client sees that the directory is created success-
fully, it requests permission to send a file. The dispatcher
invokes its virtual protocol connection to receive this re-
quest and again queries the storage manager. The storage
manager allows the transfer and returns a virtual protocol
connection into which the transfer can be written. The dis-
patcher passes both connections to the transfer manager,
stops listening on the client channel, and sleeps, waiting
for the next client request.

The transfer manager is then free to either schedule or
queue the request; once the request is scheduled, the trans-
fer manager uses past information to predict which con-

currency model will provide the best service and passes
the connection to the selected model. The transfer contin-
ues as the chosen concurrency model transfers data from
the client connection to the storage connection, perform-
ing an acknowledgment to the client if desired. Finally,
the transfer status is returned to the transfer manager and
then up to the dispatcher.

In the following sections, we describe the most impor-
tant aspects of NeST. First, we motivate the importance
of supporting multiple communication protocols within a
virtual protocol layer. Second, we describe how the trans-
fer manager adapts to the client workload and underly-
ing system to pick the concurrency model with the best
performance. Third, we show how the transfer manager
can apply scheduling policies among different connec-
tions. Fourth, we explain the role of storage guarantees in
NeST, and explain how the storage manager implements
this functionality.

3. Protocol Layer

Supporting multiple protocols is a fundamental re-
quirement of storage appliances used in the Grid. Though
there has been some standardization toward a few com-
mon protocols within the Globus toolkit [11], diversity is
likely to reign in a community as widespread and fast-
moving as the Grid. For example, even if all wide-area
transfers are conducted via GridFTP, local-area file access
will still likely be dominated by NFS, AFS, and CIFS pro-
tocols.

Multiple protocols are supported in NeST with a vir-
tual protocol layer. The design and implementation of our
virtual protocol layer not only allows clients to communi-
cate with NeST using their preferred file transfer protocol,
but also shields the other components of NeST from the
detail of each protocol, allowing the bulk of NeST code to
be shared among many protocols. Thus, the virtual proto-
col layer in NeST is much like the the virtual file system
(VFS) layer in many operating systems [18].

An alternative approach to having a single NeST server
with a virtual protocol layer is to implement separate
servers that understand each individual protocol and run
them simultaneously; we refer to this latter approach as
“Just a Bunch Of Servers” or “JBOS”. The relative advan-
tage of JBOS is that servers can be added or upgraded eas-
ily and immediately once any implementation of that pro-
tocol is available; with NeST, incorporating a new or up-
graded protocol may take more effort, as the protocol op-
erations must be mapped onto the NeST common frame-
work.

However, we believe the advantages of a single server
outweigh this implementation penalty for a number of rea-
sons. First, a single server enables complete control over
the underlying system; for example, the server can give
preferential service to requests from different protocols or
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even to different users across protocols. Second, with a
single interface, the tasks of administering and configuring
the NeST are simplified, in line with the storage appliance
philosophy. Third, with a single server, optimizations in
one part of the system (e.g., the transfer manager or con-
currency model) are applied to all protocols. Fourth, with
a single server, the memory footprint may be considerably
smaller. Finally, the implementation penalty may be re-
duced when the protocol implementation within NeST can
leverage existing implementations; for example, to imple-
ment GridFTP, we use the server-side libraries provided in
the Globus Toolkit and we use the Sun RPC package for
the RPC communication in NFS.

At this point, we have implemented five different
file transfer protocols in NeST: HTTP [10], a subset of
NFS [32], FTP [25], GridFTP [1], and the NeST native
protocol, Chirp [34]. In our experience, most request
types across protocols are very similar (e.g., all have di-
rectory operations such as create, remove, and read,
as well as file operations such as read, write, get,
put, remove, and query) and fit easily into our vir-
tual protocol abstraction. However, there are interesting
exceptions; for instance, NFS is the only protocol with a
lookup and mount request,1 and Chirp is the only protocol
that supports lot management.

We plan to include other Grid-relevant protocols
in NeST, including data movement protocols such as
IBP [24] and resource reservation protocols, such as those
being developed as part of the Global Grid Forum. We ex-
pect that as new protocols are added, most implementation
effort will be focused on mapping the specifics of the pro-
tocol to the common request object format, but that some
protocols may require additions to the common internal
interface.

Since the authentication mechanism is protocol spe-
cific, each protocol handler performs its own authentica-
tion of clients. The drawback of this approach is that a
devious protocol handler can falsify whether a client was
authenticated. Currently, we allow only Grid Security In-
frastructure (GSI) authentication [12], which is used by
Chirp and GridFTP; connections through the other proto-
cols are allowed only anonymous access.

4. Transfer Manager

At the heart of data flow within NeST is the transfer
manager. The transfer manager is responsible for mov-
ing data between disk and network for a given request.
The transfer manager is protocol agnostic: thus, all of the
machinery developed within the manager is generic and
moves data for all of the protocols, highlighting one of the
advantages of the NeST design.

1Mount, not technically part of NFS is actually a protocol in its own
right; however, within NeST, mount is handled by the NFS handler.

4.1. Multiple Concurrency Models

Inclusion in a Grid environment mandates the support
for multiple on-going requests. Thus, NeST must pro-
vide a means for supporting concurrent transfers. Unfor-
tunately, there is no single standard for concurrency across
operating systems: on some platforms, the best choice is
to use threads, on others, processes, and in other cases,
events. Making the decision more difficult is the fact that
the choice may vary depending on workload, as requests
that hit in the cache may perform best with events, and
those that that are I/O bound perform best with threads or
processes [22].

To avoid leaving such a decision to an administrator,
and to avoid choosing a single alternative that may per-
form poorly under certain workloads, NeST implements
a flexible concurrency architecture. NeST currently sup-
ports three models of concurrency (threads, processes, and
events), but in the future we plan to investigate more ad-
vanced concurrency architectures (e.g., SEDA [39] and
Crovella’s experimental server [8]). To deliver high per-
formance, NeST dynamically chooses among these archi-
tectures; the choice is enabled by distributing requests
among the architectures equally at first, monitoring their
progress, and then slowly biasing requests toward the most
effective choice.

4.2. Scheduling

Because there are likely to be multiple outstanding re-
quests within a NeST, NeST is able to selectively reorder
requests to implement different scheduling policies. When
scheduling multiple concurrent transfers, a server must de-
cide how much of its available resources to dedicate to
each request. The most basic strategy is to service re-
quests in a first-come, first-served (FCFS) manner, which
NeST can be configured to employ. However, because the
transfer manager has control over all on-going requests,
many other scheduling policies are possible. Currently,
NeST supports both proportional share and cache-aware
scheduling in addition to FCFS.

Proportional-share scheduling [37] is a deterministic
algorithm that allows fine-grained proportional resource
allocation and has been used previously for CPU schedul-
ing and in network routers [19]. Within the current imple-
mentation of NeST, it is used to allow the administrator to
specify proportional preferences per protocol class (e.g.,
NFS requests should be given twice as much bandwidth
as GridFTP requests); in the future, we plan to extend this
to provide preferences on a per-user basis.

Using byte-based strides, this scheduling policy ac-
counts for the fact that different requests transfer different
amounts of data. For example, an NFS client who reads a
large file in its entirety issues multiple requests while an
HTTP client reading the same file issues only one. There-
fore, to give equal bandwidth to NFS requests and HTTP
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requests, the transfer manager schedules NFS requests N

times more frequently, where N is the ratio between the
average file size and the NFS block size.

NeST proportional-share scheduling is similar to the
Bandwidth and Request Throttling module [16] avail-
able for Apache. However, proportional-share schedul-
ing in NeST offers more flexibility because it can sched-
ule across multiple protocols, whereas Apache request-
throttling only applies to the HTTP requests the Apache
server processes, and thus cannot be applied to other traf-
fic streams in a JBOS environment.

Cache-aware scheduling is utilized in NeST to improve
both average client perceived response time as well as
server throughput. By modeling the kernel buffer cache
using gray-box techniques [2], NeST is able to predict
which requested files are likely to be cache resident and
can schedule them before requests for files which will
need to be fetched from secondary storage. In addi-
tion to improving client response time by approximating
shortest-job first scheduling, this scheduling policy im-
proves server throughput by reducing the contention for
secondary storage.

In earlier work [4], we examined cache-aware schedul-
ing with a focus toward web workloads; however, given
the independence between the transfer manager and the
virtual protocol layer, it is clear that this policy works
across all protocols. This illustrates a major advantage that
NeST has over JBOS in that optimizations in the trans-
fer code are immediately realized across all protocols and
need not be reimplemented in multiple servers.

5. Storage Manager

Much as the protocol layer allows multiple different
types of network connections to be channeled into a sin-
gle flow, the storage manager has been designed to virtu-
alize different types of physical storage and to provide en-
hanced functionality to properly integrate into a Grid en-
vironment. The three specific roles fulfilled by the storage
manager are to implement access control, virtualize the
storage namespace, and to provide mechanisms for guar-
anteeing storage space.

Access control is provided within NeST via a generic
framework built on top of collections of ClassAd [27].
AFS-style access control lists determine read, write, mod-
ify, insert, and other privileges, and the typical notions of
users and groups are maintained. NeST support for access
control is generic, as these policies are enforced across any
and all protocols that NeST supports; clients need only be
able to communicate via the native Chirp protocol (or any
supported protocol with access control semantics) to set
them.

NeST also virtualizes the physical namespace of un-
derlying storage, thus enabling NeST to run upon a wide
variety of storage elements. However, in our current im-
plementation, we currently use only the local filesystem as

the underlying storage layer for NeST; we plan to consider
other physical storage layers, such as raw disk, in the near
future.

When running in a remote location in the Grid, users
and higher-level scheduling systems must be assured that
there exists sufficient storage space to save the data pro-
duced by their computation, or to stage input data for sub-
sequent access. To address this problem, NeST provides
an interface to guarantee storage space, called a lot, and
allows requests to be made for space allocations (similar
to reservations for network bandwidth [41]).

Each lot is defined by four characteristics: owner, ca-
pacity, duration, and files. The owner is the client entity
allowed to use that lot; only individual owners are cur-
rently allowed but group lots will be included in the next
release. The capacity indicates the total amount of data
that can be stored in the lot. The duration indicates the
amount of time for which this lot is guaranteed to exist.
Finally, each lot contains a set of files; the number of files
in a lot is not bounded and a file may span multiple lots if
it cannot fit within a single one.

When the duration of a lot expires, the files contained
in that lot are not immediately deleted. Rather, they are al-
lowed to remain indefinitely until their space needs to be
reclaimed to allow the creation of another new lot. We re-
fer to this behavior as best-effort lots and are currently in-
vestigating different selection policies for reclaiming this
space.

To create files on a NeST, a user must first have access
to a lot; however, most file transfer protocols do not con-
tain support for creating lots. In our environment, a lot
can be obtained in two different ways. First, when system
administrators grant access to a NeST, they can simultane-
ously make a set of default lots for users. Second, a client
can directly use the Chirp protocol to create a lot before
accessing the server with an alternative data-transfer pro-
tocol.

Lots can be implemented in more than one way. Our
current implementation relies on the quota mechanism of
the underlying filesystem, which allows NeST to limit the
total amount of disk space allocated to each user. Utiliz-
ing the quota system affords a number of benefits: direct
access to the file system (perhaps not through NeST) must
also observe the quota restrictions, thus allowing clients
to utilize NeST to make the space guarantee and then to
bypass NeST and transfer data directly into a local file
system. Furthermore, by using existing software within
the file system, the NeST implementation is simplified.
However, this approach provides only some of the bene-
fits of lots: a user may overfill a single lot and then not be
able to fill another lot to capacity. In the future, we plan
to investigate the costs and benefits of NeST-managed lot
enforcement.
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Figure 2. NeST in the Grid. The diagram il-
lustrates information flow in a scenario in which multiple
NeST servers are utilized in the Grid.

6 NeST in the Grid

With a basic understanding of NeST in place, we now
illustrate how multiple NeST servers might be used in a
global Grid environment. Figure 2 depicts such a scenario;
all major events are labeled with the sequence numbers as
defined in the following description.

In the figure, a user has their input data permanently
stored at their home site, in this case at a NeST in Madi-
son, Wisconsin. In step 1, the user submits a number
of jobs for remote execution to a global execution man-
ager [11, 13, 14, 31, 36]. This manager is aware that a
remote cluster, labeled the Argonne cluster, has a large
number of cycles available. The NeST “gateway” ap-
pliance in Argonne has previously published both its re-
source and data availability into a global Grid discovery
system [34]. The manager is therefore also aware that the
Argonne NeST has a sufficient amount of available stor-
age.

The manager decides to run the user’s jobs at the Ar-
gonne site, but only after staging the user’s input data
there. Thus, in step 2, the manager uses Chirp to create
a lot for the user’s files at Argonne, thus guaranteeing suf-
ficient space for input and output files. For step 3, the
manager orchestrates a GridFTP third-party transfer be-
tween the Madison NeST and the NeST at the Argonne
cluster. Other data movement protocols such as Kangaroo
could also be utilized to move data from site to site [33].

In step 4, the manager begins the execution of the jobs
at Argonne, and those jobs access the user’s input files on
the NeST via a local file system protocol, in this case NFS.
As the jobs execute, any output files they generate are also
stored upon the NeST. Note that the ability to give prefer-
ence to some users or protocols could be harnessed here,
either by local administrators who wish to ensure prefer-
ence for their jobs, or by the global manager to ensure
timely data movement.

Finally, for step 5, the jobs begin to complete, at which
point the manager moves the output data back to Madison,
again utilizing GridFTP for the wide area movement. The
manager is then free to use Chirp to terminate the lot in
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Figure 3. Multiple Protocols. The experiment mea-
sures bandwidth when four clients request 10 MB files for
each protocol. In the first four sets of bars, only a single
protocol is used within each workload (and thus only a
single server for JBOS). In the last set of bars, the work-
load contains all protocols. Within each pair, the first
bar shows the performance with NeST and the second bar
with JBOS.

step 6, and inform the user that the output files are now
available on the local NeST.

Note that many of the steps of guaranteeing space,
moving input data, executing jobs, moving output data,
and terminating reservations, can be encapsulated within
a request execution manager such as the Condor Directed-
Acyclic-Graph Manager (DAGMan) [7]. Also, higher-
level storage resource managers such as SRM could use
NeST services to synchronize access between globally-
shared storage resources [31].

7 Experiments

In this section, we perform an evaluation of the key
components of NeST. Most experiments are performed on
a cluster of Pentium-based machines, each running Linux
2.2.19, with IBM 9LZX disks, and connected via Giga-
bit Ethernet. The Solaris-based runs are performed on a
cluster of Netra T1 machines, each running Solaris 8, all
connected with 100 Mbit/s Ethernet.

7.1 Support for Multiple Protocols

We first illustrate that supporting multiple protocols
within the NeST framework incurs little overhead com-
pared to native implementations of each individual proto-
col. Figure 3 compares the bandwidth delivered to four
clients by the NeST server to that delivered by native
servers implementing each individual protocol.

In the first four sets of bars in the graph, we evaluate
workloads containing requests from only one protocol at
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Figure 4. Proportional Protocol Scheduling. This
workload is identical to that used in Figure 3. Results are
shown only for NeST. Within each set of bars, the first bar
represents the total delivered bandwidth across all pro-
tocols; the remaining bars show the bandwidth per pro-
tocol. The labels for the sets of bars show the specified
proportional ratios; the desired lines show what the ideal
proportions would be. Note that NeST is able to achieve
very close to the desired ratios in each case except the
right-most.

a time; thus, for JBOS, only a single server is running.
We make two observations from these results. First, the
delivered bandwidth varies widely across each of the pro-
tocols; Chirp and HTTP deliver in-cache files at the peak
bandwidth determined by our network, whereas GridFTP
and NFS achieve only approximately half of this band-
width. Second, and most importantly, the performance of
NeST across all protocols is very similar to that of the na-
tive server.

In the rightmost pair of bars, we show delivered band-
width when the workload contains requests from multiple
protocols; thus, for JBOS, there are multiple servers run-
ning simultaneously. Although total delivered bandwidth
for both NeST and JBOS is similar (roughly 33-35 MB/s),
the allocation of bandwidth across protocols is different.
In particular, the bandwidth delivered to NFS clients is
lower in NeST than in JBOS. Since NFS is a block-based
protocol while the other protocols are file-based, the de-
fault transfer manager within NeST ends up disfavoring
NFS since it schedules requests in a FIFO order.

7.2 Quality of Service

The advantage of NeST relative to JBOS is that the
transfer manager in NeST can be easily extended to con-
sider different scheduling policies. We have implemented
a simple stride scheduler [37] within NeST, so that a pro-
portional share of the server bandwidth can be delivered
to different types of requests. These results are shown

in Figure 4. The first set of bars shows our base case in
which the NeST transfer manager uses the simple FIFO
scheduler. The other sets of bars adjust the desired ratio
of bandwidth for each protocol.

We can make two conclusions from this graph. First,
the proportional share scheduler imposes a slight perfor-
mance penalty over FIFO scheduling, delivering a total of
approximately 24-28 MB/s instead of 33 MB/s. Second,
the proportional-share scheduler achieves very close to the
desired ratios in almost all cases. Specifically, using Jain’s
metric [6] of fairness2 in which a value of 1 represents an
ideal allocation, we achieve values of greater than 0.98 for
the 1:1:1:1, the 1:2:1:1, and the 3:1:2:1 ratios.

The only exception is that allocating ad-
ditional bandwidth to NFS (e.g., 1:1:1:4 for
Chirp:GridFTP:HTTP:NFS) is extremely difficult;
the Jain’s fairness value in this case drops to 0.87. The
challenge is that there are not a sufficient number of
NFS requests for the transfer manager to schedule them
at the appropriate interval; in the case where there is
no available NFS request, our current implementation
is work-conserving and schedules a competing request,
rather than allow the server to be idle. We are currently
implementing a non-work-conserving policy in which the
idle server waits some period of time before scheduling a
competitor [17]; such a policy might pay a slight penalty
in average response time for improved allocation control.

7.3 Concurrency Architecture Adaptation

We now show the benefits of automatically adapting
the concurrency architecture to the platform and work-
load. We run two simple experiments, with the results
shown in Figure 5. In the first experiment (shown on the
left), we run NeST on a Solaris server, with clients asking
for small (1 KB) files, all of which are in cache. These
results illustrate that for this workload, the event-based
model has lower average response time than the threaded
model, with the NeST adaptive scheme performing be-
tween the two.

In the second experiment (shown on the right), we run
NeST on a Linux server with clients asking for larger
(10 MB) files. In this case, the threaded model gives
higher bandwidth than the event model, but again, the
adaptive scheme comes close to the performance of the
best model. In both experiments, one can discern that
there is a cost for adaptation, since NeST tries all mod-
els periodically in order to find the best one for the current
workload.

2For N components trying to receive proportional shares, the fairness
of the allocation is defined as:

Fairness =

(
∑

n

i=1
Xi)

2

N∗(
∑

i=1nX2

i

)

where Xi is the ratio of the delivered allocation to the desired allocation
for each of the N components. A value of 1 indicates an ideal allocation.
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Figure 5. Adaptive Concurrency. In the graph on
the left, the experiment measures average request latency
on Solaris for 1 KB requests under events, threads, and
the adaptive NeST approach. In the graph on the right, the
experiment measures bandwidth on Linux for 10 MB re-
quests, again under all three models. In both cases, NeST
adaptively picks the better model, though there is an over-
head to doing so. Note that the process model is disabled
in these experiments for the sake of clarity.

7.4 Lot Management Overhead

We have also measured the overhead of the quota
mechanism, which we use to implement lots in NeST. We
have found that with quotas enabled, write performance
to disk decreases by roughly 50% in the worst case (un-
der a single, sequential write stream) as shown in Fig-
ure 6. However, read performance is unaffected (not sur-
prisingly). Further, some of the cost of writing with quo-
tas enabled is hidden if the server is network-bound or
if there are many concurrent write streams. We are cur-
rently investigating whether the additional complexity of
implementing lots by directly monitoring write operations
within NeST is worth the performance improvement and
the ability to distinguish lots correctly.

8 Related Work

As a storage appliance, NeST relates most closely to
the filers of Network Appliance [15] and the Enterprise
Storage Platforms of EMC [9]. NeST does not attempt
to compete with these commercial offerings in terms of
raw performance as it is primarily intended for a different
target domain. As such, NeST offers a low-cost, software-
only alternative that offers more protocol flexibility and
Grid-aware features that are needed to enable scientific
computations in the Grid.
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Figure 6. Overhead of lots This graph shows the
overhead imposed by implementing lots using the kernel
quota system. Notice that for small files, the cost is negli-
gible but increases quickly with file size.

Within the Grid community, there are a number of
projects that are related to NeST. GARA [28] is an archi-
tecture that provides advance reservations across a variety
of resources, including computers, networks, and storage
devices. Like NeST, GARA provides reservations (similar
to NeST’s lots), but allows users to make them in advance.
However, GARA does not provide the best-effort lots or
the sophisticated user management that NeST provides.

The Disk Resource Managers in SRM [31], the stor-
age depots in IBP [24] and the LegionFS servers [40] also
provide Grid storage services. However, each of these
projects is designed to provide both local storage man-
agement and global scheduling middleware. Conversely,
NeST is a local storage management solution and is de-
signed to integrate into any number of global scheduling
systems. This distinction may account for one key dif-
ference between NeST and the storage servers in each of
these systems: as they are all designed to work primarily
with their own self-contained middleware, none of these
other projects have protocol independence in their servers.
Another unique feature of NeST is its dynamic concur-
rency adaptation; we note however that this is not intrinsic
to the design of NeST and could be incorporated in these
other systems.

SRM and IBP provide space guarantees in manners
similar to NeST lots. One difference however in SRM
is that SRM guarantees space allocations for multiple re-
lated files by using two-phased pinning; lots in NeST pro-
vide the same functionality with more client flexibility and
control and less implementation complexity.

In comparing NeST lots with IBP space guarantees,
one difference is that IBP reservations are allocations for
byte arrays. This makes it extremely difficult for multiple
files to be contained within one allocation; it can be done
but only if the client is willing to build its own file system

8



within the byte array. Another difference is that IBP al-
lows both permanent and volatile allocations. NeST does
not have permanent lots but users are allowed to indef-
initely renew them and best-effort lots are analogous to
volatile allocations. However, there does not appear to be
a mechanism in IBP for switching an allocation from per-
manent to volatile while lots in NeST switch automatically
to best-effort when their duration expires.

Like NeST, LegionFS also recognizes the importance
of supporting the NFS protocol in order to allow unmod-
ified applications the benefit of using Grid storage re-
sources. However LegionFS builds this support on the
client side while NeST does so at the server side. Le-
gionFS’s client-based NFS allows an easier server im-
plementation but makes deployment more difficult as the
Legion-modified NFS module must be deployed at all
client locations.

Although NeST is the only Grid storage system that
supports multiple protocols at the server, PFS [35] and
SRB [3] middleware both do so at the client side. We see
these approaches as complementary because they enable
the middleware and the server to negotiate and choose the
most appropriate protocol for any particular transfer (e.g.,
NFS locally and GridFTP remotely).

9. Conclusion

We have presented NeST, an open-source, user-level,
software-only storage appliance. NeST is specifically
intended for the Grid and is therefore designed around
the concepts of flexibility, adaptivity, and grid-awareness.
Flexibility is achieved through a virtual protocol layer
which insulates the transfer architecture from the partic-
ulars of different file transfer protocols. Dynamic adap-
tation in the transfer manager allows additional flexibility
by enabling NeSTto run effectively on a wide range of
hardware and software platforms. By supporting key grid
functionality such as storage space guarantees, mecha-
nisms for resource and data discovery, user authentication,
and quality of service, NeST is grid-aware and thereby
able to integrate cleanly with distributed computing sys-
tems.

Through experimental results, we demonstrated how
the inclusion of multiple protocols within a single stor-
age appliances enables proportional-share scheduling in
a way which is not possible in the JBOS model. We also
presented experimental results showing how NeST adjusts
to workload on both Solaris and Linux systems and ad-
justs toward the highest performing concurrency model.
Finally, to illustrate our vision of NeST’s role in the Grid,
we described an example computation scenario which uti-
lizes Grid middleware and multiple NeSTs to coordinate
the reservation and scheduling of CPUs with the reserva-
tion and scheduling of storage resources.

NeST development release 0.9 currently runs
upon Linux (a Solaris version and support for

the NFS protocol are operational, but not yet
supported), and is available for download at
http://www.cs.wisc.edu/condor/nest/.
The first production release (1.0) should be released by
the end of 2002.
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