
The NMI Build & Test Laboratory:
Continuous Integration Framework for

Distributed Computing Software
Andrew Pavlo, Peter Couvares, Rebekah Gietzel, Anatoly Karp, Ian D. Alderman,

and Miron Livny – University of Wisconsin-Madison
Charles Bacon – Argonne National Laboratory

ABSTRACT

We present a framework for building and testing software in a heterogeneous, multi-user,
distributed computing environment. Unlike other systems for automated builds and tests, our
framework is not tied to a specific developer tool, revision control system, or testing framework,
and allows access to computing resources across administrative boundaries. Users define complex
software building procedures for multiple platforms with simple semantics. The system balances
the need to continually integrate software changes while still providing on-demand access for
developers. Our key contributions in this paper are: (1) the development of design principles for
distributed build-and-test systems, (2) a description of an implemented system that satisfies those
principles, and (3) case studies on how this system is used in practice at two sites where large,
multi-component systems are built and tested.

Introduction

Frequently building and testing software yields
many benefits [10, 14, 17]. This process, known as
continuous integration, allows developers to recognize
and respond to problems in their applications as they
are introduced, rather than be inundated with software
bugs only when a production release is needed [2]. If
the time span between the last successful build of an
application and latest broken version is short, it is eas-
ier to isolate the source code modifications that caused
the application’s compilation or testing to fail [17]. It
is important to fix these software bugs early in the
development process, as the cost of the fix has been
shown to be proportional to the age of the bug [3].

We developed the NMI Build & Test framework
to facilitate automatic builds and tests of distributed
computing software in a distributed computing environ-
ment. It is part of the NSF Middleware Initiative (NMI),
whose mission is to develop an integrated national mid-
dleware infrastructure in support of science and engi-
neering applications. In these types of problem domains,
build-and-test facilities may be comprised of a few com-
puting resources in a single location, or a large, hetero-
geneous collection of machines in different geographical
and administrative domains. Our system abstracts the
build-and-test procedures from the underlying technol-
ogy needed to execute these procedures on multiple
resources. The logically distinct steps to build or test
each application may be encapsulated in separate, fully
automated tasks in the framework without restricting
users to any specific development tool or testing system.
Thus, developers can migrate their existing build-and-
test procedures easily without compromising the proce-
dures of other applications using the framework.

To build and test any application, users explicitly
define the execution workflow of build-and-test proce-
dures, along with any external software dependencies
and target platforms, using a lightweight declarative
syntax. The NMI Build & Test software stores this
information in a central repository to ensure every build
or test is reproducible. When a build or test ro u t i n e is
submitted to the framework, the procedures are dynam-
ically deployed to the appropriate computing resources
for execution. Users can view the status of their rou-
tines as they execute on build-and-test resources. The
framework captures any artifacts produced during this
execution and automatically transfers them to a central
repository. Authorized users can pause or remove their
routines from the framework at any time.

We implement the NMI framework as a light-
weight software layer that runs on top of the Condor
high-throughput distributed batch computing system
[15, 25]. Leveraging a feature-rich batch system like
Condor provides our framework with the fault-toler-
ance, scheduling policies, accounting, and security it
requires. The NMI Build & Test software is not
installed persistently on all available computing
resources; it is deployed dynamically by the batch sys-
tem at runtime.

The framework and software that we present
here are just one component of the NMI Build & Test
Laboratory at the University of Wisconsin-Madison’s
Department of Computer Sciences. The Laboratory
also provides maintenance and administration for a
diverse collection of resources. It is used as the pri-
mary build-and-test environment for the Globus Tool-
kit [8] and the Condor batch system [25], as well as
other products. Managing such a production facility

20th Large Installation System Administration Conference (LISA ’06) 263

The NMI Build & Test Laboratory . . . Pavlo, et al.

presents certain specific system administration prob-
lems, such as maintaining a standard set of software
libraries across multiple platforms and coping with the
large amount of data produced daily by our users.

In this document, we discuss not only the design
and architecture of the NMI framework and software,
but also the tools and practices we developed for man-
aging a heterogeneous build-and-test facility on which
it is deployed.

Related Work

Continuous integration and automated build-and-
test systems are used by many large software projects
[14]. The benefits of these systems are most often
reported in discussions of agile software development
[2, 12, 22]. Research literature on the general design
of such systems, however, is limited.

There are numerous commercial and open source
continuous integration and automated build systems
available [13]. Almost all provide the basic functional-
ity of managing build and test execution on one or
more computing resources. Three popular systems are
the Mozilla Project’s Tinderbox system [20], the
Apache Software Foundation’s Maven [16], and the
CruiseControl toolkit [6]. The Tinderbox system re-
quires autonomous agents on build machines to contin-
uously retrieve source code from a repository, compile
the application, and send status reports back to a cen-
tral server. This is different from the approach taken by
Maven and CruiseControl, where a central manager
pushes builds and tests to computing resources and
then retrieves the results when they are complete.

Many systems make important assumptions
about the scope and complexity of the computing
environment in which they are deployed. For example,
some require that all build-and-test resources be dedi-
cated or that all users have equal access to them. Other
systems assume that prerequisite software is pre-
dictably installed and configured by the system admin-
istrator on all machines in the pool. Users must hard-
code paths to these external dependencies in their
build-and-test scripts, making it difficult to reproduce
past routines on platforms that have been patched or
updated. Although these constraints may be appropri-
ate for smaller projects with few users, they are not
realistic for larger organizations with diverse adminis-
trative controls or projects involving developers
located throughout the world.

Other systems offer more flexibility and control
of the build-and-test execution environment. The Elec-
tricCloud commercial distributed build system re-fac-
tors an application’s Makefiles into parallel workloads
executed on dedicated clusters [19]. A central man-
ager synchronizes the system clocks for the pool to
help ensure that a build script’s time stamp-based
dependencies work correctly. Another full-featured
commercial offering is the BuildForge continuous

integration system [7]. It uses an integrated batch sys-
tem to provide rudimentary opportunistic computing
capabilities and resource controls based on user and
group policies.

These systems seldom address the many prob-
lems inherent in managing workloads in a distributed
environment, however. For example, a system must
ensure that a running build or test can be cancelled
and completely removed from a machine. This is often
not an easy accomplishment; thorough testing of an
application often requires additional services, such as
a database server, to be launched along with the appli-
cation and testing scripts may leave a myriad of files
scattered about the local disk.

Motivation

In a distributed computing environment, a build-
and-test system cannot assume central administrative
control, or that its resources are dedicated or reliable.
Therefore, we need a system that can safely execute
routines on resources outside of one local administrative
domain. This also means that our system cannot assume
that each computing resource is installed with software
needed by the framework, or configured identically.

Because of the arbitrary nature of how routines
execute in this environment, non-dedicated remote
computing resources are often less reliable than local
build-and-test machines. But even large pools of dedi-
cated resources begin to resemble opportunistic pools
as their capacity increases, since hardware failure is
inevitable. A routine may be evicted from its execu-
tion site at any time. We need a system that can restart
a routine on another resource and only execute tasks
that have not already completed. The build-and-test
framework should also ensure that routines are never
‘‘lost’’ in the system when failures occur.

Lastly, we need a mechanism for describing the
capabilities, constraints, and properties of heteroge-
neous resources in the pool. With this information, a
system ensures that each build-and-test routine is
matched with a machine providing the correct execu-
tion environment: a user may require that their build
routines only execute on a computing resource with a
specific software configuration. The system needs to
schedule the routine on an available matching machine
or defer execution until a machine satisfying the user’s
requirements becomes available. If a satisfying
resource does not exist, the system needs to notify the
user that their requirements cannot be met.

Design Principles

The NMI framework was designed in response to
our experiences developing distributed computing
software. Our first implementation was created to help
merge the build-and-test procedures of two large soft-
ware projects into a unified environment where they
could share a single pool of computing resources and

264 20th Large Installation System Administration Conference (LISA ’06)

Pavlo, et al. The NMI Build & Test Laboratory . . .

be packaged into a single grid software distribution.
Both projects already had different established prac-
tices for building and testing their applications using a
menagerie of custom scripts and build tools. Thus, our
goal was to develop a unified framework incorporat-
ing these application-specific scripts and processes.

We developed a set of design principles for dis-
tributed build-and-test systems to solve the problems
that we encountered in this merging process. We
incorporated these principles into our implementation
of the NMI Build & Test system. They are applicable
to other continuous integration frameworks, both large
and small.

Tool Independent

The framework should not require a software
project to use a particular set of development or test-
ing tools. If the build-and-test procedures for an appli-
cation are encapsulated in well-defined building
blocks, then a clear separation of the blocks and the
tools used to manipulate them permits diversity. In our
system, users are provided with a general interface to
the framework that is compatible with arbitrary build-
and-test utilities. The abstraction afforded by this
interface ensures that new application-specific scripts
can be integrated without requiring modifications to,
and thereby affecting the stability of, the framework or
other applications.

Lightweight

The software should be small and portable. This
approach has three advantages: (1) it is easier for sys-
tem administrators to add new resources to a build-
and-test pool, (2) users are able to access resources
outside of their local administrative domain where
they may be prohibited from installing persistent soft-
ware, and (3) framework software upgrades are easier
as only the submission hosts need to be updated.

The NMI Build & Test framework uses existing,
proven tools to solve many difficult problems in
automating a distributed computing workflow. Be-
cause it is designed to be lightweight, it is able to run
on top of the Condor batch system and take advantage
of the workload management and distributed comput-
ing features Condor offers. The NMI software only
needs to be installed on submission hosts, where it is
deployed dynamically to computing resources. By this
we mean that a subset of the framework software is
transferred to build-and-test resources and automati-
cally deployed at runtime.

Explicit, Well-Controlled Environments

All external software dependencies and resource
requirements for each routine must be explicitly
defined. This helps to ensure a predictable, repro-
ducible, and reliable execution environment for a build
or test, even on unpredictable and unreliable comput-
ing resources.

When a routine’s procedures are sent to a build-
and-test resource for execution in the NMI system, the
framework creates and isolates the proper execution
environment on demand. The framework ensures that
only the software required by the routine is available
at run time. This may be accomplished in two ways:
(1) the developer must declare all the external soft-
ware that their application requires other than what
exists in the default vendor installation of the operat-
ing system, or (2) the developer may use the frame-
work interface to automatically retrieve, configure,
and temporarily install external software in their rou-
tine’s runtime environment.

Central Results Repository

A build-and-test system should capture all infor-
mation and data generated by routines and store it in a
central repository. It is important that system allows
users to easily retrieve the latest version of applica-
tions and view the state of their builds and tests [10].
The repository maintains routine’s provenance infor-
mation and historical data, which can be used for sta-
tistical analysis of builds and tests.

The NMI framework stores the execution results,
log files, and output created by routines, as well as all
input data, environment information, and dependen-
cies needed to reproduce the build or test. While a rou-
tine executes, the NMI Build & Test software continu-
ously updates the central repository with the results of
each procedure; users do not need to wait for a routine
to finish before viewing its results. Any output files
produced by builds or tests are automatically trans-
ferred back to the central repository.

Fault Tolerance

The framework must be resilient to errors and
faults from arbitrary components in the system. This
allows builds and tests to continue to execute even
when a database server goes down or network connec-
tivity is severed. If the NMI Build & Test software
deployed on a computing resource is unable to com-
municate with the submission host, the routine execut-
ing on that resource continues unperturbed. When the
submission host is available again, all queued infor-
mation is sent back; routines never stop making for-
ward progress because the framework was unable to
store the results.

The framework also uses leases to track an active
routine in the system. If the framework software is
unable to communicate with a resource executing a
routine, the routine is not restarted on another machine
until its lease expires. Thus, there are never duplicate
routines executing at the same time.

Platform-Independent vs. Specific

For multi-platform applications, users should be
able to define platform-independent tasks that are only
executed once per routine submission. This improves
the overall throughput of a build-and-test pool. For

20th Large Installation System Administration Conference (LISA ’06) 265

The NMI Build & Test Laboratory . . . Pavlo, et al.

example, an application’s documentation only needs to
be generated once for all platforms.

Figure 1: Workflow Stages – The steps to build or test an application in the NMI framework are divided into four
stages. The fetch stage is executed on the machine that the user submitted the routine. The pre- and post-pro-
cessing stages execute on any resource. The remote platform tasks each execute on the appropriate platform.

Build/Test Separation

The output of a successful build can be used as
the input to another build, or to a future test. Thus,
users are be able to break distinct operations into
smaller steps and decouple build products from testing
targets. As described above, the framework archives
the results of every build and test. When these cached
results are needed by another routine as an input, the
framework automatically transfers the results and
deploys it on the computing resource at run time.

NMI Software

We developed the NMI Build & Test Labora-
tory’s continuous integration framework software
based on the design principles described in the previ-
ous section. The primary focus of our framework is to
enable software to be built and tested in a distributed
batch computing environment. Our software provides
a command-line execution mechanism that can be trig-
gered by any arbitrary entity, such as the UNIX cron
daemon or a source code repository monitor, or by
users when they need to quickly build their software
before committing changes [10]. We believe that it is
important for the framework to accommodate diverse
projects’ existing development practices, rather than
force the adoption of a small set of software.

The NMI framework allows users to submit
builds and tests for an application on multiple
resources from a single location. We use a batch sys-
tem to provide all the network and workload manage-
ment functionality. The batch system is installed on
every machine in a build-and-test pool, but the NMI
software is only installed on the submission hosts. The
framework stores all information about executing rou-
tines in a central database. The output from routines is
returned to the submission hosts, which can store them

on either a shared network storage system or an inde-
pendent file system.

A build-and-test routine is composed of a set of
glue scripts and a specification file containing infor-
mation about how an application is built or tested. The
glue scripts are user-provided, application-specific
tasks that automate parts of the build-and-test process.
These scripts together contain the steps needed to con-
figure, compile, or deploy an application inside of the
framework. The specification file tells the framework
when to execute these glue scripts, which platforms to
execute them on, how to retrieve input data, and what
external software dependencies exist.

Workflow Stages

The execution steps of a framework submission
are divided into four stages: fetch, pre-processing,
platform, and post-processing (see Figure 1). The
tasks in the pre- and post-processing stages can be dis-
tributed on multiple machines to balance the work-
load. A routine’s results and output are automatically
transferred to and stored on the machine that it was
submitted from.
Fetch: In this stage, the framework retrieves all the

input data needed to build or test an applica-
tion. Instead of writing custom scripts, users
declare where and how files are retrieved using
templates provided by the framework. Input
data may come from multiple sources, includ-
ing source code repositories (cvs, svn), file
servers (http, ftp), and the output results from
previous builds. Thus, input templates docu-
ment the provenance of all inputs and help
ensure the repeatability of routines.

Pre-processing: This optional stage prepares the
build-and-test routine for execution on comput-
ing resources. These tasks are often used to
process the input data collected in the previous
stage. The platform-independent tasks execute

266 20th Large Installation System Administration Conference (LISA ’06)

Pavlo, et al. The NMI Build & Test Laboratory . . .

first and may modify the input data for all plat-
forms. The framework then makes separate
copies of the potentially modified input data for
each platform and executes the platform-spe-
cific tasks. Any modifications made to the input
data by the platform-specific tasks are only
reflected in that platform’s copy.

Figure 2(a): Routine status Figure 2(b): Computing resource information

Figure 2: NMI Framework Web Interface – The NMI Build & Test software provides a web client for users to view
information about their build-and-test system. The screenshot in Figure 2(a) shows status information about a
routine submitted to the framework; users can monitor the progress of tasks, download output files, and view
log files. The screenshot in Figure 2(b) shows the capabilities of a machine, lists all prerequisite software in-
stalled, and provides information about the routines currently executing on it.

Remote platform: After the input data is retrieved
and processed, the framework submits one job
for each target platform to the batch system.
These jobs spawn the remote platform tasks to
build or test an application on an appropriate
compute resource. The NMI framework tells
the batch system which input files to transfer to
the resource along with a copy of the remote
NMI framework software and the platform task
glue scripts. Before these scripts begin to exe-
cute, the NMI software prepares the working
directory for the routine and binds the execu-
tion environment paths to the local configura-
tion of the machine. When each task finishes,
any output produced can be sent back to the
submission host for storage.

Post-processing: This stage contains tasks that
process the output data produced by routines
executing on build-and-test resources. As the
platform tasks complete for each platform, the
framework executes the platform-specific
scripts for the corresponding set of results.
Once these tasks are completed for all the plat-
forms, the platform-independent scripts are
then executed.

Workflow Manager
Using a distributed batch system to coordinate

the execution of jobs running on the build-and-test
machines provides the NMI framework with the
robustness and reliability needed in a distributed com-
puting environment.

We use the Directed Acyclic Graph Manager
(DAGMan) to automate and control jobs submitted to
the batch system by the NMI Build & Test software [5,
25]. DAGMan is a meta-scheduler service for execut-
ing multiple jobs in a batch system with dependencies
in a declarative form; it monitors and schedules the
jobs in a workflow. These workflows are expressed as
directed graphs where each node of the graph denotes
an atomic task and the directed edge indicates a depen-
dency relationship between two adjacent nodes.

When a routine is submitted to the framework, its
specification file is transformed into an execution
graph. A single instance of DAGMan with this graph
as its input is submitted to the batch system. DAGMan
can then submit new jobs to the batch system using a
standard application interface. As each of its spawned
jobs complete, DAGMan is notified and can deploy
additional jobs based on the dependencies in the graph.

DAGMan also provides the NMI Build & Test
software with fault-tolerance. It is able to checkpoint a
workflow much like a batch system is able to checkpoint
a job. If the batch system fails and must be restarted, the
workflow is restarted automatically and DAGMan only
executes tasks that have not already completed.

Glue Scripts
A routine’s glue scripts contain the procedures

needed to build or test an application using the NMI
framework. These scripts automate the typical human-
operated steps so that builds and tests require no human
intervention. Build glue scripts typically include config-
ure, compile, and package steps. Test glue scripts can
deploy additional services or sub-systems at runtime for
thorough testing and can use any testing harness or
framework.

The framework provides a glue script with infor-
mation about the progress of its routine through pre-
defined environment variables. Thus, the scripts can

20th Large Installation System Administration Conference (LISA ’06) 267

The NMI Build & Test Laboratory . . . Pavlo, et al.

control a routine’s execution workflow while they are
running on a build-and-test resource. For example, a
build glue script might halt execution if a dependency
failed to compile in a previous step. Optionally, a test
glue script may choose to continue even if the previ-
ous test case failed.

Application Interfaces

The NMI framework provides a standard inter-
face for submitting and managing routines in a build-
and-test system. This interface can easily be aug-
mented by other clients or notification paradigms. For
example, our framework distribution includes a web
interface that provides an up-to-date overview of the
system (Figure 2).

Figure 3: NMI Framework Architecture – The user submits a new routine comprised of glue scripts, input data, and
a workflow specification file. The NMI software uses this information to create a dependency execution graph
and submits a DAGMan job to the Condor batch system. When the DAGMan job begins to execute, it deploys
multiple Condor jobs to the build-and-test computing resources. All output data produced by the routine’s jobs
are stored in a central repository and retrieved through ancillary clients.

Batch System

We designed the NMI framework to run on top of
the Condor high-throughput distributed computing
batch system [15, 25]. When a user submits a build-
and-test routine, the framework software deploys a sin-
gle DAGMan job into Condor (Figure 3). This DAG-
Man job then spawns multiple Condor jobs for each
platform targeted by the routine. Condor ensures that
these jobs are reliably executed on computing resources
that satisfy the explicit requirements of the routine.

Features

Condor provides many features that are neces-
sary for a distributed continuous integration system
like the NMI framework [24]. It would be possible to
deploy the framework using a different batch system if
the system implemented capabilities similar to the fol-
lowing found in Condor.
Matchmaking: Condor uses a central negotiator for

planning and scheduling jobs for execution in a
pool. Each machine provides the negotiator
with a list of its capabilities, system properties,

pre-installed software, and current activity. Jobs
waiting for execution also advertise their re-
quirements that correspond to the information
provided by the machines. After Condor col-
lects this information from both parties, the
negotiator pairs jobs with resources that mutu-
ally satisfy each other’s requirements. The
matched job and resource communicate directly
with each other to negotiate further terms, and
then the job is transferred by Condor to the
machine for execution. The framework will
warn users if they submit a build or test with a
requirement that cannot be satisfied by any
machine in the pool.

Fault tolerance: The failure of a single component
in a Condor pool only affects those processes
that deal directly with it. If a computing resource
crashes while executing a build-and-test routine,
Condor can either migrate the job to another
machine or restart it when the resource returns.
Condor uses a transient lease mechanism to
ensure only a single instance of a job exists in a
pool at any one time. If a computing resource is
unable to communicate with the central negotia-
tor when a job finishes execution, Condor trans-
fers back the retained results once network con-
nectivity is restored.

Grid resource access: Condor enables users to access
computing resources in other pools outside of
their local domain. Condor can submit jobs to
grid resource middleware systems to allow builds
and tests to execute on remote machines that may
or may not be running Condor [11].

Resource control A long-standing philosophy of the
Condor system is that the resource owner must
always be in control of their resource, and set the
terms of its use. Owners that are inconvenienced

268 20th Large Installation System Administration Conference (LISA ’06)

Pavlo, et al. The NMI Build & Test Laboratory . . .

by sharing their resources are less likely to con-
tinue participation in a distributed build-and-test
pool. Condor provides flexible policy expres-
sions that allow administrators to control which
users can access resources, set preferences for
certain routines over others, and limit when users
are allowed to execute builds and tests.

Authentication: Condor supports several authentica-
tion methods for controlling access to remote
computing resources, including GSI [9], Ker-
beros [23], and Microsoft’s SSPI [1].

File transfer The NMI framework uses Condor’s
built-in file transfer protocol to send data
between submission hosts and build-and-test
resources. This robust mechanism ensures that
files are reliably transferred; transfers are auto-
matically restarted upon connection failure or
file corruption. Condor can also use a number
of encryption methods to securely transfer files
without a shared file system.

Pool Configuration
Condor is designed to balance the needs and

interests of resource owners, users wanting to execute
jobs, and system administrators. In this spirit, Condor
enables administrators to deploy and manage build-
and-test pools that respect the wishes of resource own-
ers but can still provide access for users. Priority
schemes for both dedicated and non-dedicated
resources can be created using Condor’s flexible
resource policy expressions. For example, the dedi-
cated resources in a pool may prefer to execute pro-
cessor-intensive builds and high-load stress tests so
that shorter tests can be scheduled on idle worksta-
tions. Preferential job priority may also be granted to
specific users and groups at different times based on
deadlines and release schedules.

Condor can also further divide the resources of
individual build-and-test machines, similar to the poli-
cies for the entire pool. Condor can allocate a multi-
processor machine’s resources disproportionately for
each processor. For example, in one configuration a
processor can be dedicated for build routines and there-
fore is allocated a larger portion of the system’s mem-
ory. Test routines are only allowed to execute on the
processor with more memory when no other jobs are
waiting for execution. If a build is submitted while a
test job is executing on this processor, Condor automat-
ically evicts the test job and restarts it at a later time.

Build-and-test pools often have periods where
there are no new routines available for execution. If a
computing resource is idle for certain length of time,
Condor can trigger a special task in the framework
that performs continuous tests against an application
as backfill. This is useful to perform long-term stress
and random input tests on an application [18]. The
results from these tests are reported back to the central
repository periodically or whenever Condor evicts the
backfill job to run a regular build or test routine.

Pool & Resources Management

We now discuss our experiences in managing the
NMI Build & Test laboratory at the University of Wis-
consin-Madison. The NMI framework is also currently
deployed and running in production at other locations,
including multi-national corporations and other aca-
demic institutions.

Operating System Versions Archs CPUs
Debian Linux 1 1 2
Fedora Core Linux 4 2 20
FreeBSD 1 1 4
HP HPUX 1 1 3
IBM AIX 2 1 6
Linux (Other) 3 2 9
Macintosh OS X 2 2 8
Microsoft Windows 1 2 3
OSF1 1 1 2
Red Hat Linux 3 2 13
Red Hat Enterprise Linux 2 3 19
Scientific Linux 3 2 11
SGI Irix 1 1 4
Sun Solaris 2 1 6
SuSE Enterprise Linux 3 3 15

Table 1: NMI Build & Test Laboratory Hardware –
The laboratory supports multiple versions of oper-
ating systems on a wide variety of processor
architectures.

Our facility currently maintains over 60
machines running a variety of operating systems (see
Table 1). Over a dozen projects, representing many
developers and institutions, use the NMI laboratory
for building and testing grid and distributed computing
software. In order to fully support the scientific com-
munity, we maintain multiple versions of operating
systems on different architectures. Machines are not
merely upgraded as newer versions of our supported
platforms are released. We must instead install new
hardware and maintain support for older platform
combinations for as long they are needed by users.

Resource Configuration
We automate all persistent software installations

and system configuration changes on every machine in
our build-and-test pool. Anything that must be installed,
configured, or changed after the default vendor installa-
tion of the operating system is completely scripted, and
then performed using cfengine [4]. This includes in-
stalling vendor patches and updates. Thus, new
machine installations can be added to the facility with-
out requiring staff to rediscover or repeat modifications
that were made to previous instances of the platform.

Prerequisite Software
In a multi-user build-and-test environment, projects

often require overlapping sets of external software and
libraries for compilation and testing. The NMI frame-
work lets administrators offer prerequisite software for

20th Large Installation System Administration Conference (LISA ’06) 269

The NMI Build & Test Laboratory . . . Pavlo, et al.

routines in two ways: (1) the external software can be
pre-installed on each computing resource and pub-
lished to the NMI system, or (2) the system can main-
tain a cache of pre-compiled software to be deployed
dynamically when requested by a user. Dynamic
deployment is advantageous in environments where
routines may execute on resources outside of one
administrative domain and are unable to expect pre-
dictable prerequisite software.

At the NMI Laboratory, we use cfengine to install
a large set of prerequisite software on each of our com-
puting resources. This eases the burden on new users
whose builds expect a precise set of non-standard tools
but are not prepared to bring them along themselves.
The trade-off, however, is that these builds and tests
are less portable across administrative domains.

Data Management
The NMI Laboratory produces approximately 150

GB of data per day. To help manage the large amount
of data generated by builds and tests, the framework
provides tools and options for administrators.
Multiple submission points: More than one machine

can be deployed as a submission host in a build-
and-test pool. By default, the output of a routine
is archived on the machine it is submitted from.
The framework provides a built-in mechanism to
make these files accessible from any submission
host without requiring users to know which
machine the data resides on. If a user requests
output files from a previous build on a different
submission host, the framework automatically
transfers the files from the correct location.

Repository pruning The framework provides mecha-
nisms for removing older build and test results
from the repository based on flexible policies
defined by the lab administrator. When the
framework is installed on a submission host it
deploys a special job into the batch system that
periodically removes files based on the admini-
strator ’s policy. Routines may be pruned based
on file size, submission date, or other more com-
plicated properties, such as duplicate failures.
This process will only remove user-specified
results; task output log files, error log files, and
input data are retained so that builds and tests are
reproducible. Users can set a routine’s preserva-
tion time stamp to prevent their files from being
removed before a certain date.

Case Studies

The NMI Laboratory is used as a build and test
facility for two large distributed computing research
projects: the Globus Toolkit from the Globus Alliance
[8], and the Condor batch system from the University
of Wisconsin-Madison’s Department of Computer Sci-
ences [15]. We present two brief case studies on how
the NMI framework has improved each of these
projects software development process.

Globus Toolkit
The Globus Toolkit is an open source software

distribution that provides components for constructing
large grid systems and applications [8]. It enables
users to share computing power and other resources
across administrative boundaries without sacrificing
local autonomy. Globus-based systems are deployed
all across the world and are the backbone of many
large academic projects and collaborations.

 0

 20

 40

 60

 80

 100

 120

 140

 160

07
/0

6

05
/0

6

03
/0

6

01
/0

6

11
/0

5

09
/0

5

07
/0

5

05
/0

5

03
/0

5

01
/0

5

11
/0

4

09
/0

4

pl
at

fo
rm

 jo
bs

month/year

builds
tests

Figure 4: Globus Builds & Tests – The large spike in
the number of jobs in the graph indicates when a
new version of Globus was released and required
many new build and test routines. Initially, the
toolkit’s build-and-test procedures were contained
in a monolithic batch script. The tests were then
later broken out of the build scripts into separate
tasks. Thus, no data exists on these tests that were
executed in the first months after switching to the
NMI system.

Prior to switching to the NMI framework, the
Globus system was built and tested using a combina-
tion of custom scripts and the Tinderbox open-source
continuous integration system [20]. Each build
machine contained a pre-defined source file that
mapped all the external software needed by the build
process to paths on the local disk. This file contained
the only record in the system of what external soft-
ware was used to execute a build or test, and did not
contain full information about the specific version
used. If the computing resource was updated to use a
newer version of the software, there was no record in
the build system to reflect that fact.

As the project grew, developers received an
increased amount of bug reports from users. Many of
these reports were for esoteric platforms that were not
readily available to the Globus developers. Fewer builds
and tests were submitted to these machines, which in
turn caused bugs and errors to be discovered much later
after they were introduced into the source code.

Now the Globus Toolkit is built and thoroughly
tested every night by the NMI Build & Test software

270 20th Large Installation System Administration Conference (LISA ’06)

Pavlo, et al. The NMI Build & Test Laboratory . . .

on 10 different platforms (Figure 4). The component
glue scripts for Globus contain the same build proce-
dures that an end-user follows in order to compile the
toolkit. These procedures also include integrity checks
that warn developers when the build process generates
files that are different from what the system expected.
All other regression and unit tests are preformed
immediately after compilation. Globus’ developers
have benefited from the NMI framework’s strict atten-
tion to the set of software installed on computing
resources and its ability to maintain a consistent exe-
cution environment for each build-and-test run. This
allows them to test backwards compatibility of their
build procedures with older versions of development
tools, which they were unable to do before.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

07
/0

6

05
/0

6

03
/0

6

01
/0

6

11
/0

5

09
/0

5

07
/0

5

05
/0

5

03
/0

5

01
/0

5

11
/0

4

09
/0

4

pl
at

fo
rm

 jo
bs

month/year

builds
tests

Figure 5: Condor Builds & Tests – Each platform job
is a single build or test execution cycle on a com-
puting resource; there may be multiple platform
jobs for a single framework build-and-test rou-
tine. Sharp increases in the number of builds cor-
respond to release deadlines for developers.

Condor

Before the advent of Linux’s popularity, Condor
supported a modest number of operating systems used
by the academic and corporate communities. Initially,
each developer was assigned a platform to manually
execute builds and given a paper checklist of tests to
perform whenever a new production release was
needed. All of Condor’s build scripts contained hard-
coded path information for each machine that it was
built on. If one of these machines needed to be rebuilt
or replaced, the administrator would have to construct
the system to exactly match the expected specification.

Like Globus, the Condor development team also
deployed a Tinderbox system to automate builds and
tests on all the platforms that were supported. Due to
hardware and storage limitations, however, this system
could only build either the stable branch or the devel-
opment branch of Condor each day; developers had to
make a decision on which branch the system should
build next. This also meant that the system could not

easily build custom branches or on-demand builds of
developer ’s workspaces.

Since transitioning to the NMI framework, the
Condor project has experienced a steady increase in
the number of builds and tests (Figure 5). The devel-
opment team submits an automatic build and test to
the framework every night for both the stable and
development releases; Condor is built on 17 platforms
with 122 unit and regression tests per platform. In
addition, the framework is used for numerous on-
demand builds of Condor submitted by individual
developers and researchers to test and debug experi-
mental features and new platforms.

Future Work

Many facets of the NMI framework can be
expanded to further improve its capabilities.

Currently, the NMI framework coordinates
builds and tests on multiple platforms independently.
Each routine executes on a single computing resource
for each specified platform. We are developing a
mechanism whereby a build-and-test routine can exe-
cute on multiple machines in parallel and allow them
to communicate with one another. Users specify an
arbitrary number of machines and the batch system
deploys the routine only when it has simultaneous
access to all of the resources it requires. The frame-
work passes information to the glue scripts about
which machines are running the other parallel
instances of the routine. Such dynamic cross-machine
testing will allow users to easily test platform and ver-
sion interoperability without maintaining permanent
‘‘target’’ machines for testing.

We are also extending our test network into the
Schooner [21] system, based on Emulab [26], to
expand these distributed tests to cover a variety of net-
work scenarios. Schooner permits users to perform
tests which include explicit network configurations. For
example, the NMI framework will be able to include
automated tests of how a distributed application per-
forms in the presence of loss or delay in the network.
This system will also allow administrators to rapidly
deploy a variety of different operating system configu-
rations both on bare hardware and in virtual machines.

A major boon to the NMI framework will be the
proliferation of virtualization technology in more sys-
tems. Instead of deploying and maintaining a specific
computing resource for every supported platform, the
framework would keep a cache of virtual machine
images that would be dynamically deployed at a user’s
request. Because administrators will only need to con-
figure a single virtual machine image for each operating
system in the entire pool, this will simplify build-and-
test pool management and utilization. The framework
would then also be able to support application testing
that requires privileged system access or which makes
irreversible alterations to the system configuration; these

20th Large Installation System Administration Conference (LISA ’06) 271

The NMI Build & Test Laboratory . . . Pavlo, et al.

changes would be localized to that instance of the virtual
operating system and not the cached image.

Availability

The NMI Build & Test Laboratory continuous
integration framework is available for download at our
website under a BSD-like license: http://nmi.cs.wisc.
edu/ .

Acknowledgments

This research is supported in part by NSF Grants
No. ANI-0330634, No. ANI-0330685, and No.
ANI-0330670.

Conclusion

We have presented the NMI Build & Test Labora-
tory continuous integration framework software. Our
implementation is predicated on design principles that
we have established for distributed build-and-test sys-
tems. The key features that distinguish our system are
(1) its ability to execute builds and tests on computing
resources spanning administrative boundaries, (2) it is
deployed dynamically on heterogeneous resources, and
(3) it maintains a balance between continuous integra-
tion practices and on-demand access to builds and tests.
Our software uses the Condor batch system to provide
the capabilities necessary to operate in a distributed
computing environment. We discussed our experiences
in managing a diverse, heterogeneous build-and-test
facility and showed how the NMI framework functions
as the primary build-and-test system for two large soft-
ware projects. From this, we believe that our system
can be used to improve the development process of
software in a distributed computing environment.

Author Biographies

Andrew Pavlo, Peter Couvares, Rebekah Gietzel,
and Anatoly Karp are members of the Condor research
project at the University of Wisconsin-Madison’s
Department of Computer Sciences. Ian D. Alderman is
a Ph.D. candidate at the University of Wisconsin-
Madison’s Department of Computer Sciences. Miron
Livny is a Professor with the Department of Computer
Sciences at the University of Wisconsin-Madison and
currently leads the Condor research project.

Charles Bacon is a researcher specializing in grid
technology at Argonne National Laboratory.

Bibliography

[1] The security support provider interface, White
paper, Microsoft Corp., Redmond, WA, 1999.

[2] Beck, K., Extreme programming explained:
embrace change, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[3] Boehm, B. W. and P. N. Papaccio, ‘‘Understand-
ing and controlling software costs,’’ IEEE Trans-
actions Software Engineering 14, Vol. 10, pp.
1462-1477, 1988.

[4] Burgess, M., ‘‘A site configuration engine,’’
USENIX Computing Systems, Vol. 8, Num. 2, pp.
309-337, 1995.

[5] Couvares, P., T. Kosar, A. Roy, J. Weber, and K.
Wenger, Workflows for e-Science, Chapter:
Workflow Management in Condor, Springer-Ver-
lag, 2006.

[6] CruiseControl, http://cruisecontrol.sourceforge.net .
[7] Fierro, D., Process automation solutions for soft-

ware development: The BuildForge solution,
White paper, BuildForge, Inc., Austin, TX,
March, 2006.

[8] Foster, I., and C. Kesselman, ‘‘Globus: A meta-
computing infrastructure toolkit,’’ The Interna-
tional Journal of Supercomputer Applications
and High Performance Computing, Vol. 11,
Num. 2, pp. 115-128, Summer, 1997.

[9] Foster, I. T., C. Kesselman, G. Tsudik, and S.
Tuecke, ‘‘A security architecture for computa-
tional grids,’’ ACM Conference on Computer and
Communications Security,, pp. 83-92, 1998.

[10] Fowler, M., Continuous integration, May, 2006,
http://www.martinfowler.com/articles/continuous
Integration.html .

[11] Frey, J., T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke, ‘‘Condor-G: A computation manage-
ment agent for multi-institutional grids,’’ Cluster
Computing, Vol. 5, pp. 237-246, 2002.

[12] Grenning, J., ‘‘Launching extreme programming
at a process-intensive company,’’ IEEE Software,
Vol. 18, Num. 6, pp. 27-33, 2001.

[13] Hellesoy, A., Continuous integration server fea
ture matrix, May, 2006, http://damagecontrol.
codehaus.org/Continuous+Integration+Server+
Feature+Matrix .

[14] Holck, J., and N. Jørgensen, ‘‘Continuous inte-
gration and quality assurance: A case study of
two open source projects,’’ Australian Journal of
Information Systems, Num. 11/12, pp. 40-53,
2004.

[15] Litzkow, M., M. Livny, and M. Mutka, ‘‘Condor
– a hunter of idle workstations,’’ Proceedings of
the 8th International Conference of Distributed
Computing Systems, June, 1988.

[16] Apache Maven, http://maven.apache.org .
[17] Mcconnell, S., ‘‘Daily build and smoke test,’’

IEEE Software, Vol. 13, Num. 4, p. 144, 1996.
[18] Miller, B. P., L. Fredriksen, and B. So, ‘‘An

empirical study of the reliability of UNIX utili-
ties,’’ Communications of the Association for
Computing Machinery, Vol. 33, Num. 12, pp.
32-44, 1990.

[19] Ousterhout, J., and J. Graham-Cumming, Scal-
able software build accelerator: Faster, more
accurate builds, White paper, Electric Cloud,
Inc., Mountain View, CA, February, 2006.

[20] Reis, C. R., and R. P. de Mattos Fortes, ‘‘An
overview of the software engineering process

272 20th Large Installation System Administration Conference (LISA ’06)

Pavlo, et al. The NMI Build & Test Laboratory . . .

and tools in the Mozilla Project,’’ Workshop on
Open Source Software Development, Newcastle,
UK, pp. 162-182, 2002.

[21] Schooner, http://www.schooner.wail.wisc.edu .
[22] Schuh, P., ‘‘Recovery, redemption, and extreme

programming,’’ IEEE Software, Vol. 18, Num. 6,
pp. 34-41, 2001.

[23] Steiner, J. G., B. C. Neuman, and J. I. Schiller,
‘‘Kerberos: An authentication service for open
network systems,’’ Proceedings of the USENIX
Winter 1988 Technical Conference, USENIX
Association Berkeley, CA, pp. 191-202, 1988.

[24] Tannenbaum, T., D. Wright, K. Miller, and M.
Livny, ‘‘Condor – a distributed job scheduler,’’
Beowulf Cluster Computing with Linux, T. Ster-
ling, Ed., MIT Press, October, 2001.

[25] Thain, D., T. Tannenbaum, and M. Livny, ‘‘Dis-
tributed computing in practice: the condor expe-
rience,’’ Concurrency – Practice and Experi-
ence, Vol. 17, Num. 2-4, pp. 323-356, 2005.

[26] White, B., J. Lepreau, L. Stoller, R. Ricci, S.
Guruprasad, M. Newbold, M. Hibler, C. Barb,
and A. Joglekar, ‘‘An integrated experimental
environment for distributed systems and net-
works,’’ Proc. of the Fifth Symposium on Oper-
ating Systems Design and Implementation,
Boston, MA, pp. 255-270, USENIX Association,
Dec., 2002.

20th Large Installation System Administration Conference (LISA ’06) 273

