
Salable Computing: Pratie and ExperieneVolume 6, Number 3, pp. 9�18. http://www.spe.org ISSN© 2005 SWPSPARROT: AN APPLICATION ENVIRONMENT FOR DATA-INTENSIVE COMPUTINGDOUGLAS THAIN AND MIRON LIVNY∗Abstrat. Distributed omputing ontinues to be an alphabet-soup of servies and protools for managing omputationand storage. To live in this environment, appliations require middleware that an transparently adapt standard interfaes tonew distributed systems; suh middleware is known as an interposition agent. In this paper, we present several lessons learnedabout interposition agents via a progressive study of design possibilities. Although performane is an important onern, we payspeial attention to less tangible issues suh as portability, reliability, and ompatibility. We begin with a omparison of sevenmethods of interposition and selet one method, the debugger trap, that is the slowest but also the most reliable. Using thismethod, we implement a omplete interposition agent, Parrot, that splies existing remote I/O systems into the namespae ofstandard appliations. The primary design problem of Parrot is the mapping of �xed appliation semantis into the semantis ofthe available I/O systems. We o�er a detailed disussion of how errors and other unexpeted onditions must be arefully managedin order to keep this mapping intat. We onlude with a evaluation of the performane of the I/O protools employed by Parrot,and use an Andrew-like benhmark to demonstrate that semanti di�erenes have onsequenes in performane.1Key words. Adaptive middleware, error diagnosis, interposition agents, virtual mahines.1. Introdution. The �eld of distributed omputing has produed ountless systems for harnessing remoteproessors and aessing remote data. Despite the intentions of their designers, no single system has ahieveduniversal aeptane or deployment. Eah arries its own strengths and weakness in performane, manageability,and reliability. Renewed interest in world-wide omputational systems is inreasing the number of protoolsand interfaes in play. A omplex eology of distributed systems is here to stay.
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The result is an hourglass model of distributed omputing,shown in Figure 1.1. At the enter lie ordinary appliations builtto standard interfaes suh as POSIX. Above lie a number ofbath systems that manage proessors, interat with users, anddeal with failures of exeution. A bath system interats with anappliation through simple interfaes suh as main and exit. Be-low lie a number of I/O servies that organize and ommuniatewith remote memory, disks, and tapes. An ordinary operatingsystem (OS) transforms an appliation's expliit reads and writesinto the low-level blok and network operations that ompose aloal or distributed �le system.However, attahing a new I/O servie to a traditional OS isnot a trivial task. Although the priniple of an extensible OShas reeived muh attention in the researh ommunity [19℄, pro-dution operating systems have limited failities for extension,usually requiring kernel modi�ations or administrator privileges.Although this may be aeptable for a personal omputer, this re-quirement makes it di�ult or impossible to provide ustom I/Oand naming servies for appliations visiting a borrowed omput-ing environment suh as a timeshared mainframe, a ommodityomputing luster, or an opportunisti workgroup.To remedy this situation, we advoate the use of interpositionagents [13℄. These devies transform standard interfaes intoremote I/O protools not normally found in an operating system.In e�et, an agent allows an appliation to bring its �lesystemand namespae along with it wherever it goes. This releases thedependene on the details of the exeution site while preservingthe use of standard interfaes. In addition, the agent an tap into naming servies that transform private namesinto fully-quali�ed names relevant in the larger system.
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10 D. Thain and M. Livnyinternal tehniques external tehniquespoly. stati dyn. binary debug remote kernelexten. link link rewrite trap �lesys. alloutsope library stati dynami dynami no setuid any anyburden rewrite relink identify identify run ommand superuser modify oslayer �xed any any any sysall fs ops only sysallinit/�ni hard hard hard hard easy impossible easya�. linker no no no no yes yes yesdebug yes yes yes yes limited yes yesseure no no no no yes yes yes�nd holes easy hard hard hard easy easy easyporting easy hard hard hard medium easy mediumFig. 1.2. Properties of Interposition TehniquesIn this paper, we present pratial lessons learned from several years of building and deploying interpositionagents within the Condor projet. [20, 28, 21, 22℄ Although the notion of suh agents is not unique to Condor [13,2, 12℄, they have seen relatively little use in other prodution systems. This is due to a variety of tehnial andsemanti di�ulties that arise in onneting real systems together.We present this paper as a progressive design study that explores these problems and explains our solutions.We begin with a detailed study of seven methods of interposition, �ve of whih we have experiene buildingand deploying. The remaining two are e�etive but impratial beause of the privilege required. We willompare the performane and funtionality of these methods, giving partiular attention to intangibles suhas portability and reliability. In partiular, we will onentrate on one method that has not been explored indetail: the debugger trap. Although this method has been employed in idealized operating systems, it requiresadditional tehniques in order to provide aeptable performane on popular operating systems with limiteddebugging apabilities, suh as Linux.Using the debugger trap, we fous on the design of Parrot, an interposition agent that splies remote I/Osystems into the �lesystem spae of ordinary appliations. A entral problem in the design of an I/O agent isthe semanti problem of mapping not-quite-idential interfaes to eah other. The outgoing mapping is usuallyquite simple: read beomes a get, write beomes a put, and so forth. The real di�ulty lies in interpreting thelarge spae of return values from remote servies. Many new kinds of failure are introdued: servers rash,redentials expire, and disks �ll. Trivial transformations into the appliation's standard interfae lead to abrittle and frustrating experiene for the user.A orollary to this observation is that aess to omputation and storage annot be fully divored. Abstratnotions of design often enourage the partition of distributed systems into two ativities: either omputationor storage. An interposition agent serves as a onnetion between these two onerns; like an operating systemkernel, it manages both types of devies and must mediate their interation, sometimes bypassing the appliationitself.This paper is a ondensed version of a workshop paper. Due to spae limitations, we have omitted a numberof setions and details, indiated by footnotes. The interested reader may �nd further details in the originalpaper [23℄ or in a tehnial report. [24℄22. Interposition Tehniques Compared. There are many tehniques for interpositioning servies be-tween an appliation and the underlying system. Eah has partiular strengths and weaknesses. Figure 1.2summarizes seven interposition tehniques. They may be broken into two broad ategories: internal and exter-nal. Internal tehniques modify the memory spae of an appliation proess in some fashion. These tehniquesare �exible and e�ient, but annot be applied to arbitrary proesses. External tehniques apture and modifyoperations that are visible outside an appliation's address spae. These tehniques are less �exible and havehigher overhead, but an be applied to nearly any proess. The Condor projet has experiene building anddeploying all of the internal tehniques as well one external tehnique: the debugger trap. The remaining twoexternal tehniques we desribe from relevant publiations.The simplest tehnique is the polymorphi extension. If the appliation struture is amenable to extension,we may simply add a new implementation of an existing interfae. The user then must make small ode hangesto invoke the appropriate onstrutor or fatory in order to produe the new objet. This tehnique is used in
2Omitted: Example appliations of interposition agents.



Parrot: An Appliation Environment for Data-Intensive Computing 11Condor's Java Universe [22℄ to onnet an ordinary InputStream or OutputStream to a seure remote proxy. Itis also found in general purpose libraries suh as SFIO [25℄.The stati library tehnique involves reating a replaement for an existing library. The user is obliged tore-link the appliation with the new library. For example, Condor's Standard Universe [20℄ provides a drop-inreplaement for the standard C library that provides transparent hekpointing as well as proxying of I/Obak to the submission site, fully emulating the user's home environment. The dynami library tehnique alsoinvolves reating a replaement for an existing library. However, through the use of linker ontrols, the user maydiret the new library to be used in plae of the old for any given dynamially linked library. This tehniqueis used by DCahe [8℄, some implementations of SOCKS [15℄, as well as our own Bypass [21℄ toolkit. Thebinary rewriting tehnique involves modifying the mahine ode of a proess at runtime to rediret the �ow ofontrol. This requires very detailed knowledge of the CPU arhiteture in use, but this an be hidden behindan abstration suh as the Paradyn [17℄ toolkit. This tehnique has been used to �hijak� an unwitting proessat runtime [28℄.Traditional debuggers make use of a speialized operating system interfae for stopping, examining, andresuming a proess. The debugger trap tehnique uses this interfae, but instead of merely examining theproess, the debugging agent traps eah system all, provides an implementation, and then plaes the resultbak in the target proess while nullifying the intended system all. An example of this tehnique is UFO [2℄,whih allows aess to HTTP and ftp resoures via whole-�le fething. A di�ulty with the debugger trap isthat many tools ompete for aess to a single proess' debug interfae. The Tool Daemon Protool (TDP) [18℄provides an interfae for managing suh tools in a distributed system.A remote �lesystem may be used as an interposition agent by simply modifying the �le server. NFS is apopular hoie for this tehnique, and is used by the Legion [27℄ objet-spae translator, as well the Slie [4℄miroproxy. Finally, short of modifying the kernel itself, we may install a one-time kernel allout whih permitsa �lesystem to be servied by a user-level proess. This faility an be present from the ground up in amirokernel [1℄, but an also be added as an afterthought, whih is the ase for most implementations ofAFS [11℄.The four internal tehniques may only be applied to ertain kinds of programs. Polymorphi extension andstati linking only apply to those programs that an be rebuilt. The dynami library tehnique requires thatthe replaed library be dynami, while binary rewriting (with the Paradyn toolkit) requires the presene of thedynami loader, although no partiular library must be dynami. The three external tehniques apply to anyproess, with the exeption that the debugging trap prevents the traed proess from elevating its privilege levelthrough the setuid feature.The burden upon the user for eah of these tehniques also varies widely. For example, polymorphi exten-sion requires small ode hanges while stati linking requires rebuilding. These tehniques may not be possiblewith pakaged ommerial software. Dynami linking and binary rewriting require that the user understandwhih programs are dynamially linked and whih are not. Most standard system utilities are dynami, butmany ommerial pakages are stati. Our experiene is that users are surprised and quite frustrated whenan (unexpetedly) stati appliation blithely ignores an interposition agent. The remote �lesystem and kernelallout tehniques impose the smallest user burden, but require a ooperative system administrator to makethe neessary hanges. The debugger trap imposes a small burden on the user to simply invoke the agentexeutable.Perhaps the most signi�ant di�erene between the tehniques is the ability to trap di�erent layers ofsoftware. Eah of the internal tehniques may be applied at any layer of ode. For example, Bypass has beenused to instrument an appliation's alls to the standard memory alloator, the X Window System library, andthe OpenGL library. In ontrast, the external tehniques are �xed to partiular interfaes. The debugger traponly operates on physial system alls, while the remote �lesystem and kernel allout are limited to ertain�lesystem operations.Di�erenes in these tehniques a�et the design of ode that they attah to. Consider the matter ofimplementing a diretory listing on a remote devie. The internal tehniques are apable of interepting libraryalls suh as open and opendir. These are easily mapped to remote �le aess protools, whih generally haveseparate proedures for aessing �les and diretories. However, the Unix interfae uni�es �les and diretories;both are aessed through the system all open. External tehniques must aept an open on either a �le ordiretory and defer the binding to a remote operation until either read or getdents is invoked. The hoie ofinterposition layer a�ets the design of the agent.



12 D. Thain and M. LivnyThe external tehniques also di�er in the range of operations that they are able to trap. While the debuggertrap an modify any system all, the remote �lesystem and kernel allout tehniques are limited to �lesystemoperations. A partiular remote �lesystem may have even further restritions. For example, the statelessNFS protool has no representation of the system alls open and lose. Without aess to this information,the interposed servie annot provide semantis signi�antly di�erent than those provided by NFS. Further,suh �le system interfaes do not express any binding between individual operations and the proesses thatinitiate them. That is, a remote �lesystem agent sees a read or write but not the proess id that issued it.Without this information, it is di�ult or impossible to performing aounting for the purposes of seurity orperformane.A number of important ativities take plae during the initialization and �nalization of a proess: dynamilibraries are loaded; onstrutors, destrutors, and other automati routines are run; I/O streams are reatedor �ushed. During these transitions, the libraries and other resoures in use by a proess are in a state of�ux. This ompliates the implementation of internal agents that wish to interept suh ativity. For example,the appliation may perform I/O in a global onstrutor or destrutor. Thus, an internal agent itself annotrely on global onstrutors or destrutors: there is no ordering enfored between those of the appliation andthose of the agent. Likewise, a dynamially loaded agent annot interpose on the ations of the dynami linker.The programmer of suh agents must not only exerise are in onstruting the agent, but also in seleting thelibraries invoked by the agent. Suh ode is time onsuming to reate and debug. These ativities are muhmore easily manipulated through external tehniques. For example, external tehniques an easily trap andmodify the ativities of the dynami linker.No ode is ever omplete nor fully debugged. Prodution deployment of interposition agents requires thatusers be permitted to debug both appliations and agents. All tehniques admit debugging of user programs,with the only ompliation arising in the debugger trap. For obvious reasons, a single proess annot bedebugged by two proesses at one, so a debugger annot be attahed to an instrumented proess. However,a debugger trap agent an be used to manage an entire proess tree, so instead the user may use the agent toinvoke the debugger, whih may then invoke the appliation. The debugger's operations may be trapped justlike any other system all and passed along to the appliation, all under the supervision of the agent.Interposition agents may be used for seurity as well as onveniene. An agent may provide a sandboxwhih prevents an untrusted appliation from modifying any external data that it is not permitted to aess.The internal tehniques are not suitable for this seurity purpose, beause they may easily be subverted by aprogram that invokes system alls diretly without passing through libraries. The external tehniques, however,annot be fooled in this way and are thus suitable for seurity.Related to seurity is the matter of hole detetion. An interposition agent may fail to trap an operationattempted by an appliation. This may simply be a bug in the agent, or it may be that the interfae hasevolved over time, and the appliation is using a depreated or newly added interfae that the agent is notaware of. Internal agents are espeially sensitive to this bug. As standard libraries develop, interfaes areadded and deleted, and modi�ed library routines may invoke system alls diretly without passing through theorresponding publi interfae funtion. For example, fopen may invoke the open system all without passingthrough the open funtion. Suh an event auses general haos in both the appliation and agent, often resultingin rashes or (worse) silent output errors. No suh problem ours in external agents. Although interfaes stillhange, any unexpeted event is deteted as an unknown system all. The agent may then terminate theappliation and indiate the exat problem.The problem of hole detetion must not be underestimated. Our experiene is that any signi�antoperating system upgrade inludes hanges to the standard libraries, whih in turn require modi�ations tointernal trapping tehniques. Thus, internal agents are rarely forward ompatible. Further, identifying and�xing suh holes is time onsuming. Beause the missed operation itself is unknown, one must spend long hourswith a debugger to see where the expeted ourse of the appliation di�ers from the atual behavior. Onedisovered, a new entry point must be added to the agent. The treatment is simple but the diagnosis is di�ult.We have learned this lesson the hard way by porting both the Condor remote system all library and the Bypasstoolkit to a wide variety of Unix-like platforms.For these reasons, we have desribed porting in Figure 1.2 as follows. The polymorphi extension and theremote �lesystem are quite easy to build on a new system. The debugger trap and the kernel allout havesigni�ant system dependent omponents to be ported to eah operating system, but the nature and stabilityof these interfaes make this a tratable task. The remaining three tehniques�stati linking, dynami linking,



Parrot: An Appliation Environment for Data-Intensive Computing 13getpid stat open/lose read 8KB bandwidthunmod .18±.03 µs 1.85±.09 3.18± .08 3.27± .19 282±13 MB/srewrite .21±.25 µs 1.82±.02 3.21± .05 3.26± .03 280± 7 MB/sstati .21±.02 µs 1.80±.17 3.59± .05 3.34± .02 280±17 MB/sdynami 1.22±.01 µs 3.60±.10 5.53± .06 4.31± .09 278± 4 MB/s(α unmod) (6.8x) (1.9x) (1.7x) (1.3x) (0.99x)debug 10.06±.21 µs 55.41±.50 42.09± .06 30.99± .26 122± 4 MB/s(α unmod) (56x) (30x) (13x) (9x) (0.43x)Fig. 2.1. Overhead of Interposition Tehniquesand binary rewriting�should be viewed as a signi�ant porting hallenge that must be revisited at every minoroperating system upgrade.Figure 2.1 ompares the performane of four transparent interposition tehniques. We onstruted a benh-mark C program whih timed 100,000 iterations of various system alls on a 1545 MHz Athlon XP1800 runningLinux 2.4.18. Available bandwidth was measured by reading a 100 MB �le sequentially in 1 MB bloks. Themean and standard deviation of 1000 yles of eah benhmark are shown. File operations were performed on anexisting �le in a temporary �le system. The unmod ase gives the performane of this benhmark without anyagent attahed, while the remaining �ve show the same benhmark modi�ed by eah interposition tehnique.In eah ase, we onstruted a very minimal agent to trap system alls and invoke them without modi�ation.As an be seen, the binary rewriting and stati linking methods add no signi�ant ost to the appliation.The dynami method has overhead on the order of miroseonds, as it must manage the struture of (potentially)multiple agents and invoke a funtion pointer. However, these overheads are quikly dominated by the ostof moving data in and out of the proess. The debugger trap has the greatest overhead of all the tehniques,ranging from a 56x slowdown for getpid to a 6x slowdown for writing 8 KB. Most importantly, the bandwidthmeasurement demonstrates that the debugger trap ahieves less than half of the unmodi�ed I/O bandwidth.It should be fairly noted that this lateny and bandwidth will be dominated by the lateny and bandwidth ofaessing remote servies on ommodity networks. Seurity and reliability ome at a measurable ost.3

Fig. 3.1. Interative Browsing with Parrot3. Parrot. The Parrot interposition agent attahes standard appliations to a variety of distributed I/Osystems by way of the debugger trap, desribed above. Eah I/O protool is presented as a normal �lesystementry under a new top-level diretory bearing the name of the protool. In addition, an optional mountlist maybe given, whih redirets parts of the �lesystem namespae to external paths. Figure 3.1 shows Parrot beingused with standard tools to manipulate �les stored at the Mass Storage Server (MSS) at the National Center forSuperomputing Appliations (NCSA) via the Grid Seurity Infrastruture (GSI) [9℄ variant of the File TransferProtool (FTP).Parrot is equipped with a variety of drivers for ommuniating with external storage systems; eah haspartiular features and limitations. The simplest is the Loal driver, whih simply passes operations on tothe underlying operating system. The Chirp protool was designed by the authors in an earlier work [22℄
3Omitted: a detailed desription of the debugger trap.



14 D. Thain and M. Livnyto provide remote I/O with semantis very similar to POSIX. A standalone hirp server is distributed withParrot. The venerable File Transfer Protool (FTP) has been in heavy use sine the early days of theInternet. Its simpliity allows for a wide variety of of implementations, whih, for our purposes, results in anunfortunate degree of impreision whih we will expand upon below. Parrot supports the seure GSI [3℄ variantof ftp. The NeST protool is the native language of the NeST storage appliane [6℄, whih provides an array ofauthentiation, alloation, and aounting mehanisms for storage that may be shared among multiple transientusers. The RFIO and DCAP protools were designed in the high-energy physis ommunity to provide aessto hierarhial mass storage devies suh as Castor [5℄ and DCahe [8℄.Beause Parrot must preserve POSIX semantis for the sake of the appliation, our foremost onern isthe ability of eah of these protools to provide the neessary semantis. Performane is a seondary onern,although it is a�eted signi�antly by semanti issues. A summary of the semantis of eah of these protoolsis given in Figure 3.2.4name binding disipline dirs metadata symlinks onnetionsposix open/lose random yes diret yes -hirp open/lose random yes diret yes per lientftp get/put sequential varies indiret no per �lenest get/put random yes indiret yes per lientr�o open/lose random yes diret no per �le/opdap open/lose random no diret no per lientFig. 3.2. Protool Compatibility with POSIX4. Errors and Boundary Conditions. Error handling has not been a pervasive problem in the designof traditional operating systems. As new models of �le interation have developed, attending error modes havebeen added to existing systems by expanding the software interfae at every level. For example, the additionof distributed �le systems to the Unix kernel reated the new possibility of a stale �le handle, represented bythe ESTALE error. As this error mode was disovered at the very lowest layers of the kernel, the value wasadded to the devie driver interfae, the �le system interfae, the standard library, and expeted to be handleddiretly by appliations.We have no suh luxury in an interposition agent. Appliations use the existing interfae, and we haveneither the desire nor the ability to hange it. Sometimes, if we are luky, we may re-use an error suh asESTALE for an analogous, if not idential purpose. Yet, the underlying devie drivers generate errors rangingfrom the vague ��le system error� to the mirosopially preise �server's erti�ation authority is not trusted.�How should the unlimited spae of errors in the lower layers be transformed into the �xed spae of errorsavailable to the appliation?5For example, several devie drivers have the neessary mahinery to arry out all of a user's possible requests,but provide vague errors when a supported operation fails. The FTP driver allows an appliation to read a �levia the GET ommand. However, if the GET ommand fails, the only available information is the error ode550, whih enompasses almost any sort of �le system error inluding �no suh �le,� �aess denied,� and �is adiretory.� The POSIX interfae does not permit a ath-all error value; it requires a spei� reason. Whiherror ode should be returned to the appliation?One tehnique for dealing with this problem is to interview the servie in order to narrow down the auseof the error, in a manner similar to that of an expert system. Suppose that we attempt to retrieve a �le usingan FTP GET operation. If the GET should fail, we may hypothesize that the named �le is atually a diretory.The hypothesis may be tested with a hange diretory (CWD) ommand. If that sueeds, the hypothesis istrue, and we may return the preise error �not a �le.� If that fails, we must propose another hypothesis andtest it. Parrot performs a number of two- and three-step interviews in response to a variety of FTP errors.The onnetion struture of a remote I/O protool also has impliations for semantis as well as performane.Chirp, NeST, and DCAP require one TCP onnetion between eah lient and server. FTP and RFIO requirea new onnetion made for eah �le opened. In addition, RFIO requires a new onnetion for eah operationperformed on a non-open �le. Beause most �le system operations are metadata queries, this an result in an
4Omitted: Details of the various protools supported by Parrot.
5Omitted: Several more examples of error transformation.



Parrot: An Appliation Environment for Data-Intensive Computing 15extraordinary number of onnetions in a short amount of time. Ignoring the lateny penalties of this ativity, alarge number of TCP onnetions an onsume resoures at lients, servers, and network devies suh as addresstranslators.65. Performane. We have deferred a disussion of performane until this point so that we may see theperformane e�ets of semanti onstraints. Although it is possible to write appliations expliitly to use remoteI/O protools in the most e�ient manner, Parrot must provide onservative and omplete implementations ofPOSIX operations. For example, an appliation may only need to know the size of a �le, but if it requests thisinformation via stat, Parrot is obliged to �ll the struture with everything it an, possibly at great ost.
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The I/O servies disussed here, with the exep-tion of Chirp, are designed primarily for e�ient high-volume data movement. This is demonstrated by Fig-ure 5.1, whih ompares the throughput of the proto-ols at various blok sizes. The throughput was mea-sured by opying a 128 MB �le into the remote storagedevie with the standard p ommand equipped withParrot and a varying default blok size, as ontrolledthrough the stat emulation desribed above.Of ourse, the absolute values are an artifat ofour system, however, it an be seen that all of the pro-tools must be tuned for optimal performane. Theexeption is Chirp, whih only reahes about one halfof the available bandwidth. This is beause of thestrit RPC nature required for POSIX semantis; theChirp server does not extrat from the underlying�lesystem any more data than neessary to supplythe immediate read. Although it is tehnially feasi-ble for the server to read ahead in antiipation of the next operation, suh data pulled into the server's addressspae might be invalidated by other ators on the �le in the meantime and is thus semantially inorret.The hiup in throughput of DCAP at a blok size of 64KB is an unintended interation with the defaultTCP bu�er size of 64 KB. The developers of DCAP are aware of the artifat and reommend hanging eitherthe blok size or the bu�er size to avoid it. This is reasonable advie, given that all of the protools requiretuning of some kind.Figure 5.2 benhmarks the lateny of POSIX-equivalent operations in eah I/O protool. These measure-ments were obtained in a manner idential to that of Figure 2.1, with the indiated servers residing on thesame system as in Figure 5.1. Notie that the latenies are measured in milliseonds, whereas Figure 2.1 gavemiroseonds. proto stat open/lose read 8KB write 8KB bandwidthhirp .50± .14 ms .84± .09 2.80± .06 2.23± .04 4.1 MB/sftp .87± .09 ms 2.82± .26 (no random aess) 7.9 MB/snest 2.51± .05 ms 2.53± .17 4.48± .14 7.41± .32 7.9 MB/sr�o 13.41± .28 ms 23.11± 1.29 3.32± .14 2.85± .18 7.3 MB/sdap 152.53±16.68 ms 159.09±16.68 3.01± 0.62 3.14± .62 7.5 MB/sFig. 5.2. Performane of I/O Protools On a Loal-Area NetworkWe hasten to note that this omparison, in a ertain sense, is not �fair.� These data servers provide vastlydi�erent servies, so the performane di�erenes demonstrate the ost of the servie, not the leverness of theimplementation. For example, Chirp and FTP ahieve low latenies beause they are lightweight translationlayers over an ordinary �le system. NeST has somewhat higher lateny beause it provides the abstrationof a virtual �le system, user namespae, aess ontrol lists, and a storage alloation system, all built on anexisting �lesystem. The ost is due to the neessary metadata log that reords all suh ativity that annot bestored diretly in the underlying �le system. Both RFIO and DCAP are designed to interat with mass storage
6Omitted: A disussion of the interfae between Parrot and bath systems.



16 D. Thain and M. Livnydist. proto opy list san make deleteloal loal .15± .02 se .09± .20 .08± .02 65.38±3.47 .86± .18 seloal hirp 1.22± .03 se .34± .02 .40± .01 81.02±1.46 .79± .01 selan hirp 6.16± .22 se .57± .30 1.32± .03 144.00±1.35 1.26± .02 selan hirp 10.67± .90 se .53± .07 4.72± .32 95.05±2.33 1.24± .03 selan ftp 34.88±1.72 se 1.47± .02 17.78±1.14 122.54±3.14 2.95± .15 selan nest 52.35±4.18 se12.92±4.87 28.14±4.52 307.19±3.26 31.73±4.37 selan r�o (overwhelmed by repeated onnetions)lan dap (does not support diretories without nfs)Fig. 5.3. Performane of the Andrew-Like Benhmarksystems; single operations may result in gigabytes of ativity within a disk ahe, possibly moving �les to orfrom tape. In that ontext, low lateny is not a onern.That said, several things may be observed from this table. Although FTP has bene�tted from years ofoptimizations, the ost of a stat is greater than that of Chirp beause of the need for multiple round trips to �llin the neessary details. The additional lateny of open/lose is due to the multiple round trips to name andestablish a new TCP onnetion. Both RFIO and DCAP have higher latenies for single byte reads and writesthan for 8KB reads and writes. This is due to bu�ering whih delays small operations in antiipation of furtherdata. Most importantly, all of these remote operations exeed the lateny of the debugger trap itself by severalorders of magnitude. Thus, we are omfortable with the previous deision to sari�e performane in favor ofreliability in the interposition tehnique.We onlude with a marobenhmark similar to the Andrew benhmark. [11℄ This Andrew-like benhmarkonsists of a series of operations on the Parrot soure tree, whih onsists of 13 diretories and 296 �les totaling955 KB. To prepare, the soure tree is moved to the remote devie. In the opy stage, the tree is dupliated onthe remote devie. In the list stage, a detailed list (ls -lR) of the tree is made. In the san stage, all �les in thetree are searhed (grep) for a text string. In the make stage, the software is built. From an I/O perspetive,this involves a sequential read of every soure �le, a sequential write of every objet �le, and a series of randomreads and writes to reate the exeutables. In the delete stage, the tree is deleted.Figure 5.3 ompares the performane of the Andrew-like benhmark in a variety of on�gurations. In thethree ases above the horizontal rule, we measure the ost of eah layer of software added: �rst with Parrotonly, then with a Chirp server on the same host, then with a Chirp server aross the loal area network. Notsurprisingly, the I/O ost of separating omputation from storage is high. Copying data is muh slower overthe network, although the slowdown in the make stage is quite aeptable if we intend to inrease throughputvia remote parallelization.In the two ases adjaent to the rule, the only hange is the enabling of ahing. As might be expeted, theost of unneessary dupliation auses an inrease in opying the soure tree, although the di�erene is easilymade up in the make stage, where the ahe eliminates the multiple random I/O neessary to link exeutables.The list and delete stages only involve diretory struture and metadata aess and are thus not a�eted by theahe.In the �ve ases below the horizontal rule, we explore the use of various protools to run the benhmark.In all of these ases, ahing is enabled in order to eliminate the ost of random aess as disussed. TheDCAP protool is semantially unable to run the benhmark, as it does not provide the neessary aess todiretories. The RFIO protool is semantially able to run the benhmark, but the high frequeny of �lesystemoperations results in a large number of TCP onnetions, whih quikly exhausts networking resoures at boththe lient and the server, thus preventing the benhmark from running. Chirp, FTP, and NeST are all able toomplete the benhmark. The NeST results have a high variane, due to delays inurred while the metadatalog is periodially ompressed. The di�erene in performane between Chirp, FTP, and NeST is primarilyattributable to the ost of metadata lookups. All the stages make heavy use of stat; the multiple round tripsneessary to implement this ompletely for FTP and NeST have a striking umulative e�et.6. Conlusions. Interposition agents provide a stable platform for bringing old appliations into newenvironments. We have outlined the di�ulties that we have enountered as well as the solutions we haveonstruted in the ourse of building and deploying several types of agents within the Condor projet. As wehave shown, the Linux debugger trap has several limitations, but an still be put to good use. As interest grows
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