
Error Management in the Pluggable File System

Douglas Thain and Miron Livny

9 October 2002
Technical Report 1448

Computer Sciences Department
University of Wisconsin

Abstract

Distributed computing continues to be an alphabet-soup
of services and protocols. No single system for managing
CPUs or I/O devices has emerged (or is likely to emerge)
as a universal solution. Therefore, distributed applications
require adapters in order to plug themselves into existing
systems. The difficulty of building such adapters lies not
in normal operations, but in the complications of failures
and other unusual situations. We demonstrate this with the
Pluggable File System, an adapter for connecting POSIX
applications to remote I/O services. We offer a detailed dis-
cussion of the construction of the system while dealing with
failures and other events that are not trivially mapped into
the application’s expectations. The key insight is that cor-
rect I/O management requires coordination with CPU man-
agement. We conclude with some practical advice for others
constructing similar software. 1

1. Introduction

The field of distributed computing has produced count-
less systems for harnessing remote CPUs and accessing re-
mote data. Despite the intentions of their designers, no
single system has achieved universal acceptance or deploy-
ment. Each carries its own strengths and weakness in per-
formance, manageability, and reliability. A renewed inter-
est in world-wide computational systems called grids [17]
is increasing the number of systems and interfaces in play.
A complex ecology of distributed systems is here to stay.

The result is an hourglass model of distributed comput-
ing, shown in Figure 1. Users submit batch jobs to a va-
riety of different interfaces. Each system interfaces with a
process through standard POSIX interfaces such main and
exit. This interface is so simple that it is rarely discussed

1This research was supported in part by a Cisco Distinguished Graduate
Fellowship and a Lawrence Landweber NCR Fellowship in Distributed
Systems.

Standard
Application

HTTP Chirp SRB
Kangaroo

The Pluggable File System

Common I/O Interface

Distributed I/O Services

FTP

Condor PBS NQE LSF Leveler
Load

Distributed Computing Services

C
PU

 −
 I/O

Interaction

main, exit, abort, kill, sleep

Common Process Interface

open, close, read, write, lseek

Operating System

Figure 1. The Hourglass Model

and has no name, yet it is certainly universal and critical to
the wide deployment of applications across batch systems.
Equally important is the common interface to I/O services.
An operating system transforms standard operations such
as read and write into the low-level block and network
operations needed for a local or distributed file systems.

Yet, a common interface to I/O operations is not enough.
Applications require common conventions for naming and
data access beyond the simple names of the I/O functions.
The wide variety of systems available to a user through re-
mote batch systems all have varying degrees of access to
local and distributed systems scattered across the grid. Al-
though many file systems aim to provide a universal nam-
ing scheme across the entire internet, none are actually de-
ployed to this degree. Without universal naming and data
access, a common interface has little value.

To remedy this situation, we advocate the use of inter-

position agents, or sometimes adapters for short. These de-
vices transform standard interfaces such as POSIX I/O into
remote I/O protocols not normally found in an operating
system kernel. In effect, an adapter allows an application
to bring its filesystem along wherever it goes. This releases
the dependence on the kernel details of the execution site
while preserving the use of standard interfaces.

In this paper, we present the Pluggable File System
(PFS), a user-level interposition agent that transforms an ap-
plication’s standard POSIX I/O operations into a variety of
remote I/O services. We describe the overall architecture
and naming scheme of the system, and offer some practical
discussion on the fine details necessary to make PFS operate
with real applications.

The multiplexing of a standard interface is a standard
technique in any programmer’s repertoire. In the realm of
I/O, the mapping is quite simple: read becomes a read,
write becomes a write, and so on. The real difficulty
lies in the vast new kinds of failure in a distributed system:
servers crash, networks fail, and disks fill. Furthermore, ap-
plications frequently require operations that have no obvi-
ous analogue in a remote system. How can such difficulties
be reconciled with the “no-futz” requirements of large-scale
distributed computing?

Our primary contribution is a detailed discussion of the
problem of new error modes. We are not exploring tech-
niques of fault tolerance, roughly defined as masking fail-
ures through retry or reservation of extra capacity. Rather,
we are studying the problem of error management, in which
we seek to simple direct an honest message about a failure
along the correct channel. The key to error management, as
suggested in Figure 1, is to recognize that correct I/O man-
agement must carefully interact with process management.
The two do not stand alone.

To discuss these problems in detail, we must necessar-
ily present the Pluggable File System in a fair amount of
detail. We begin by describing the architecture and capabil-
ities of PFS. We then move to examine how to handle the
problems of missing operations and unusual failure modes.
We conclude with a discussion of some practical problems
that arose in the construction of PFS, in the hope that it will
assist others building such systems.

2. User’s Experience

To offer some of the flavor of PFS, we begin by out-
linging how a user might interact with it in an interactive
setting. The pfsrun program starts a new application with
PFS attached:

% pfsrun tcsh

With PFS attached, the local filesystem is still visible
through all of its normal filenames:

% cat /etc/passwd
% grep word /usr/dict/words

In addition, remote resources appeach under names in
the root directory reflecting the protocol used to access
them. These are quite similar to the Uniform Resource Lo-
cators used by the world wide web and other applications.

% vi /http/www.yahoo.com/index.html
% less /ftp/ftp.cs.wisc.edu/RoadMap

Finally, remote directory trees may be spliced into the
local filesystem through the use of a mount list. Each entry
in the list consists of a name in the logical file system to
be redirected to a remote directory or file. Here is a simple
mount list:

/in /chirp/nest.wisc.edu/indir
/out /kangaroo/kang.wisc.edu/outdir

And here’s how it might be used:

% pfsrun -mountlist mount.file tcsh
% grep function /in/*.c > /out/results

3. Architecture

PFS is built with Bypass [35], a general-purpose tool for
building interposition agents. It takes the form of a shared
library which may be forcibly inserted into any dynamically
linked process. This capability is present in most Unix-like
operating systems, although it is activated in a variety of
ways. pfsrun is a script which hides such details from
the user. Bypass preserves all of the existing entry points
to POSIX functions at the standard library interface, so PFS
is free to use ordinary libraries and standard routines inter-
nally. It makes use of large, general-purpose library such
as the Secure Sockets Layer and the Globus Toolkit [16]
without modifications.

Figure 2 shows the internal structures of PFS. They are
quite similar to the process I/O structures in a standard op-
erating system kernel, so PFS might be considered a virtual
operating system. Strictly speaking, PFS does not modify
any files directly. A file is a persistent data structure on sta-
ble storage with attributes such as a size, owner, creation
time, and so on. PFS has many internal data structures that
represent files, but relies on other systems to actually exam-
ine and modify the files themselves.

PFS has four levels of data structures that represent files.
A file descriptor (fd) is an integer allocated by open or

dup and is the only user-visible handle to an open file. A
file descriptor contains no identifying information about a
file, but only serves as a reference to a file pointer below.

A file pointer records the current seek pointer (csp) used
to remember an application’s position in a file. The csp is

name

type

data

name

type

data

name

type

data

csp

file

csp

file

csp

file

Local
Driver

HTTP
Driver

GridFTP
Driver

Mapped Memory
Operations on Operations on

File NamesFile Descriptors
Operations on

Application

name

type

data

csp

filePointers

File

Descriptors

File

Objects

0 1 2 3 4 5 6 7 8 9 10

Page Fault

Handler

Drivers

Device
Driver
Chirp

FTP Servers

Web Servers

Local File System

NeST Servers

Resolver

Name

Paged Memory

File

openread write lseek

The Pluggable
File System

Kangaroo Server

SRB Servers

Driver
Kangaroo SRB

Driver

List
Mount

Figure 2. Architecture of the Pluggable File System

modified by operations such as lseek and is implicitly used
by operations such as read and write to determine what
portion of a file to examine or modify. A file pointer also
refers to a file object below.

A file object represents a file currently in use by the ap-
plication. It records the type of storage system where the
file is stored, the name of the file, and any other private data,
such as open sockets, necessary to access the file. It refers
to a device driver below to actually perform file operations.

A device driver represents an entire system or protocol
for accessing data, such as HTTP or simply the local file
system. It implements all of the I/O operations that must be
passed to a remote system. Notice that there is no generic
data structure that represents an open network connection or
a single remote server. Such details are encapsulated inside
the device driver, as the number and type of remote con-
nections necessary is quite dependent on the details of the
protocol involved.

As Figure 2 suggests, data structures are shared at ev-
ery level. For example, file descriptors 1 and 2 share a file
pointer. This would occur if file descriptor 2 was created by
a call to dup. Also, file descriptors 1,2, and 7 all share the
same file object. This would occur by a call to open with
the same file name used to access file descriptor 1.

PFS has a large number of entry points for all variety of
I/O operations. However, we may classify the large major-
ity of them into two categories: operations on file descrip-
tors and operations on file names. The former traverse most
of the data structures in PFS, while the latter take a more
direct route to the device drivers.

Operations such as read, write, and lseek operate on file
descriptors. Upon entering PFS, these commands check the
validity of the given fd, and then descend the various data
structures. read and write take the csp from the correspond-
ing file pointer and use it as an argument to call a read
method in the corresponding file object. The file object,
through the device driver, performs the necessary remote
operation.

Other operations such as rename, stat and delete op-
erate on file names. Upon entering PFS, these commands
first pass through the name resolver, which may transform
the program-supplied name (or names) according to a vari-
ety of rules and systems. The name resolver is discussed in
more detail below. Then, the transformed names are passed
directly to the device driver, which performs the operation
on the remote system.

open is a special case. Figure 2 shows how it interacts
with the system in three ways. First, it transforms the given
name using the name resolver and the mount list, if any.
Second, it contacts the named device driver and attempts to
open the file. Third, if successful, it allocates a file descip-
tor, pointer, and object according to the newly open file and
installs them in the tree of data structures. The bold items in

Figure 2 highlight a newly opened file at descriptor 9 using
the Chirp driver.

Most UNIX applications access file through explicit op-
erations such as read and write. However, files may also be
memory mapped. In a standard operating system, a mem-
ory mapped file is a separate virtual memory segment whose
backing store is kept in the file system rather than in the vir-
tual memory pool. PFS accomplishes the same thing using
its own underlying drivers, thus reducing memory mapped
files into the same mechanisms as other open files.

When the user establishes a memory mapping with the
mmap, PFS allocates a corresponding piece of virtual
memory from its own heap via the standard malloc allo-
cator. However, the application’s permission to read and
write the memory are removed by using mprotect. When
the user attempts to access the memory, the system raises
a SIGSEGV signal indicating a memory access violation.
PFS traps this signal and uses the SA INFO option to ex-
tract the address of the memory reference. If the address
falls within a memory mapped file managed by PFS, it
passes control to the page fault handler shown in Figure 2.

The page fault handler currently performs demand pag-
ing with writeback at close. As read page faults occur, they
are satisfied by issuing read operations on the underlying
driver. As write faults occur, data are simply written the lo-
cal memory region. When the user calls munmap to delete
the segment, dirty pages are written back to the target stor-
age. Naturally, the default page size used by the underlying
system is much too small for the latency of I/O operations
over the wide area network. The user may select an appro-
priate page size through an environment variable.

This memory-mapping facility is quite simple. It does
not perform any pageouts in order to fit the segment into
physical memory. Rather, the whole segment is stored in
virtual memory, under the assumption that paging out to lo-
cal disk is much faster than paging out to remote storage. In
addition, there is no facility for enforcing coherence on pro-
cesses the communicate via a shared memory segment. This
is generally impossible, as most remote I/O protocols have
no facilities for coherence. However, this has not proven to
be a significant obstacle, as our primary target of sequen-
tial scientific applications (by definition) do not require dis-
tributed shared memory.

4. Drivers

PFS is equipped with a variety of drivers for communi-
cating with external storage systems. The C++ interface to
a driver is shown in Figure 3. This interface lets the user
perform single operations on named files. Two methods in
the interface bear explanation: open and getdir.

The open method found in the driver is a factory method
that binds a file name to a file object, which is shown in

class pfs_driver {

pfs_file * open(path, flags, mode);
pfs_dir * getdir(path);

int stat(path, buf);
int lstat(path, buf);
int unlink(path);
int access(path, mode);
int chmod(path, mode);
int rename(oldname, newname);
int chdir(path);
int readlink(path, buf, bufsiz);
int mkdir(path, mode);
int rmdir(path);

};

Figure 3. Driver Interface

class pfs_file {

int close();
pfs_ssize_t read(data, length, pos);
pfs_ssize_t write(data, length, pos);
int stat(buf);
int truncate(length);
int sync();
int fcntl(cmd, arg);
int ioctl(cmd, arg);
int fchmod(mode);

pfs_ssize_t get_size();
int is_seekable();
int is_local();
int isatty();

};

Figure 4. File Interface

class pfs_dir {

struct dirent * read();
void rewind();
pfs_size_t tell();
void seek(pfs_size_t pos);
int append(char *name);

}

Figure 5. Directory Interface

Figure 4. Once opened, the file object serves as the focal
point for operations on file descriptors or mapped memory.
To support access through multiple file pointers at once, the
file object appears to be random access: it accepts an offset
argument to read and write. However, not all driver types
actually support random access to files. For this reason, an
additional method, is seekable is used by PFS to determine
whether an lseek on such a file will succeed. The con-
sequences of attempting to lseek within a sequential-only
driver are explored below.

The getdir method found in the driver does not corre-
spond to any single function normally found in the standard
library or at the kernel interface. Few remote I/O systems
have a stateful set of commands for scanning a directory,
such as opendir, readdir, and closedir. Instead, a single
atomic operation retrieves a whole directory listing. The up-
per layers of PFS are resonsible for implementing the state-
ful POSIX directory-scanning commands.

Each of the various drivers in PFS has some special pro-
cessing and unusual cases. Let’s explore each of them in
turn.

4.1. Local

The local driver is very simple. It passes all file system
operations directly through to the underlying kernel. The
local driver is used by default when a file name does not
map to any remote system. Thus, a program using PFS still
has access to all data in the local filesystem. This comes
with very little overhead. The trapping mechanism provide
by Bypass only adds a few microseconds to every call. [35]
By default, memory mapped to a local file uses the native
memory-mapping mechanism for performance. However,
the user-level mechanism provided by PFS may optionally
be enabled in order to trace an application’s memory access
patterns.

4.2. HTTP

The HTTP driver is also quite simple, but provides
much less functionality than the local driver. HTTP sim-
ply doesn’t support many of the operations necessary for a
general file system. Arbitrary files may be read sequentially.
The stat command may be used to examine a file, but the
only available information is the size of the file. Directory
listings are not possible. HTTP performs whole file trans-
fers, therefore every concurrent open file requires its own
connection. After a file is closed, its connection is cached
by the driver for possible future use.

Other interposition systems such as UFO [4] have used
whole-file fetching of files available through sequential-
access protocols such as HTTP, thus simplifying the prob-
lems of random access and permitting a cache of recently-

used files. We have not taken this route for two reasons.
First, whole-file fetching introduces a large latency when a
file is first opened. This is an unnecessary price when an ap-
plication could take advantage of overlapped CPU and I/O
access by reading streamed files sequentially. Second, few
remote I/O protocols have a reliable mechanism for ensur-
ing synchronization between shared and cached files. The
user who is willing to deal with both of these problems may
explicitly make a local copy (via PFS, of course) and then
operate on it directly.

4.3. FTP

In contrast to HTTP, the FTP driver is very full-featured.
Depending on the variant of the server, sequential access,
directory listings, and querying of meta-data may be possi-
ble. If a server requires a password, an interactive user may
type it at the console while the application is blocked. These
features come at considerable complexity. Many file oper-
ations require attempting several different command varia-
tions in order to support the many flavors of the protocol. In
addition, each open file requires its own interaction with the
server: one TCP stream for control, and one TCP stream for
data.

The FTP driver also supports the GSI-enabled FTP [5]
variant. This protocol introduces strong authentication to
remote services without using cleartext passwords. In ad-
dition, more efficient commands for partial-file access are
available, along with high-throughput sequential access via
multiple TCP streams.

4.4. Chirp

The Chirp protocol, spoken by the NeST storage appli-
ance, is somewhat easier to integrate with PFS due to its
similarity with the POSIX interface. Chirp permits random
access to arbitrary files, meta-data requests, directory list-
ings, and more. In addition, access to multiple files may be
interleaved on the same connection, so the driver only needs
to maintain one connection per server accessed, rather than
one per open file.

The Ghost driver is a research variant of the Chirp driver.
This driver redirects operations to a nearby ghost, which is
a localized buffer cache for a remote NeST storage appli-
cance. A set of ghosts with a parent NeST forms a migra-
tory file service, which is discussed further by Bent, et al.
[7]

4.5. Kangaroo

The Kangaroo protocol is even easier to integrate, al-
though it offers less power than Chirp. The Kangaroo sys-
tem is designed to offload all of an application’s I/O re-
quests to a single nearby server, where they can be satisfied

through buffering, caching, and remote I/O. Thus, the Kan-
garoo device driver simply performs trivial RPCs on a sin-
gle server. No connection management is necessary. Kan-
garoo does not support directory listings.

A unique feature of Kangaroo is its data-consistency pro-
tocol. Unlike many remote file services, Kangaroo provides
no confirmation of write operations until the client issues
an explicit commit or push command. The former forces
data to stable storage at the nearest server, while the lat-
ter blocks until it is visible at its destination. PFS issues a
commit when the application exits and optionally performs
push in response to an fsync.

5. Error Handling

Error handling has not been a pervasive problem in the
design of traditional operating systems. As new models of
file interaction have developed, their attending error modes
have been added to existing systems by expanding the soft-
ware interface at every level. For example, the addition of
NFS [32] to the Unix kernel created the new possibility of a
stale file handle, represented by the ESTALE error. As this
error mode was discovered at the very lowest layers of the
kernel, the value was added to the device driver interface,
the file system interface, the standard library, and expected
to be handled directly by applications.

We have no such luxury in PFS. Applications use the ex-
isting POSIX interface, and we have no desire or facility
for changing it. Yet, the underlying device drivers gener-
ate errors ranging from the vague “file system error” to the
bizarre “server’s credentials have expired.” How should the
unlimited space of errors in the lower layers be transformed
into the fixed space of errors available to POSIX?

Before we answer this question, we must remind the
reader of our application domain. PFS was motivated by the
need for scientific applications to access a variety of stor-
age devices from a high-throughput batch execution sys-
tem. In such a context, there are already many ways for
a job to fail without the help of the I/O system: the submit-
ter may lost contact with the execution site; the execution
site may crash; the job may be forcibly evicted by the ma-
chine owner; and so on. Regardless of what may happen to
the job, it is the responsibility of another process to over-
see its progress and restart it if it should fail. Therefore,
it is no disaster to kill the job when no other course seems
reasonable.

This is not to say that killing the process is always the
best solution. Rather, we must perform triage – some in-
jured processes are not worth the trouble to save. We may
divide errors into three general categories:

1. A transformable error may easily be converted into a
form that is both honest and recognizable by the appli-
cation. Such errors are converted into an appropriate

errno and passed up to the application in the normal
way. Some transformable errors take considerable ef-
fort to determine the precise reason for the error.

2. A permanent error indicates that the process has a fatal
flaw and cannot possibly run to completion. With this
type of error, PFS must halt the process in a way that
makes it clear the CPU system must not reschedule it.

3. A transient error indicates the process cannot run here
and now, but has no inherent flaw. When encountering
transient errors the I/O system must interact with the
CPU system. It must indicate that the job is to release
the CPU, but would like to execute again later and retry
the I/O operation.

The handling of errors requires interaction between CPU
and I/O managers. In order to handle both permanent and
transient errors correctly, the I/O system must inform the
CPU system exactly what the next course of action for the
process must be. In the case of the permanent error, the I/O
system must forcibly halt the process in a manner that can-
not be misinterpreted by the CPU manager. In most batch
systems, this is accomplished by terminating normally with
a non-zero exit code. In the case of a transient error, the
situation is more complex. We would like to attach com-
plex conditions to the restart of a process. For example,
restart could be triggered by the arrival of a file or the com-
pletion of another process. However, we may minimally
satisfy our need with a simple hook for yielding the CPU
and allowing another process to be scheduled in the batch
system. In Condor, this is accomplished by terminating ab-
normally with a signal indicating outside interference. (i.e.
SIGKILL) The batch system will retract the process and
reschedule it at some future time on another CPU.

We must emphasize the difference between local CPU
management and batch CPU management. In response to
a transient error, PFS could simply block or sleep until the
necessary data are available. This would indeed cause the
running process to release the CPU and move to a wait state
in the local operating system scheduler. However, what the
process is actually doing with the CPU is irrelevant to the
distributed batch system. Unless the program issues some
explicit instruction to the batch system, it still is in poses-
sion of the CPU. It will continued to be charged (either in
money or priority) for consuming the resource, whether it is
actually consuming physical cycles or not.

Each of the three types of errors come from two distinct
sources of errors. A mismatch of requests occurs when the
target system does not have the needed capability. A mis-
match of results occurs when the target system is capable,
but the result has no obvious meaning to the application.
Let’s consider each in turn.

5.1. Mismatched Requests

Our first difficulty comes when a device driver provides
no support whatsoever for an operation requested by the ap-
plication. We have three different solutions to this problem,
based on our expectation of the application’s ability to han-
dle an error. Representative examples are unlink, lseek, and
stat.

Read-only services such as HTTP do not allow files to
be deleted. A call to unlink a file cannot possibly succeed.
Such a failure may be trivially represented to the calling ap-
plication as “permission denied” or “read-only filesystem”
without undue confusion by the user. Applications under-
stand that unlink may fail for any number of other reasons
on a normal filesystem, and are thus prepared to understand
and deal with such errors.

In contrast, almost no applications are prepared for lseek
to fail. It is generally understood that any file accessed
through open may be accessed randomly, so few (if any) ap-
plications even bother to consider the return value of lseek.
If we use lseek on an FTP server that does not implement
random access through the REST command, we risk any
number of dangers by allowing a never-checked command
to fail. Therefore, an attempt to seek on a non-seekable file
results in a permanent error, returning the job to the user
with an message on the standard error stream.

The stat command offers the most puzzling difficulty of
all. stat simply provides a set of meta-data about a file, such
as the owner, access permissions, size, and last modifica-
tion time. The problem is that few remote storage systems
provide all, or even most, of this data. For example, FTP
provides a file’s size, but no other meta-data in a standard
way. 2

We initially caused stat to report “permission denied”
on such systems, indicating the data were not available. But
to our surprise, this caused a large majority of programs to
fail. stat is a very frequent operation used by command-
line tools, large applications, and even the standard I/O li-
brary. We were quite dismayed at this discovery, because it
seemed the necessary information simply could not be ex-
tracted from most remote I/O systems. However, a brief
investigation into the actual uses of stat gave some cause
for hope. Here are some of its major applications:

• Cataloging. Commands such as ls and program ele-
ments such as file dialogs use stat to annotate lists of
files with all possible detail for the interactive user’s
edification.

2A de-facto standard in FTP is the LIST -l command, which usually
provides a detailed UNIX file list, actually performing a stat on every file
in a directory. However, this cannot be relied upon, as each server pro-
vides a slightly different selection of attributes in a slightly different for-
mat. Further, not all servers are UNIX-like, and even those that are have
no obligation to produce such output.

Device Number = 0
Index Number = Incremented at every call

Permissions = RWX by anyone
Number of Links = 1

User = The calling user
Group = The group of the calling user

Size = 0
Block Size = User-configurable

Blocks = 0
Last Access Time = Current time

Last Mod. Time = Current time
Last Change Time = Current time

Figure 6. Default Results of Stat

• Optimization. The standard C library, along with
many other tools, uses stat to retrieve the optimal
block size to be used with an I/O device. This is used
to choose the buffer size for the ANSI buffered I/O in-
terface.

• Short-circuiting. Many programs and libraries, in-
cluding the command-line shell and the Fortran stan-
dard library, use stat or access as a quick way to check
the presence or validity of a file before actually per-
forming an expensive open or exec.

• Unique identity. Tools such as cp, which copy one
file to another, use the unique device and file numbers
returned by stat to determine if two file names refer to
the same physical file.

In each of these cases, there is very little harm in pre-
senting default, or even guessed information. No program
can rely on the values returned by stat because it cannot be
done atomically with any other operation. If a program uses
stat to measure the existence or size of a file, it must still be
prepared for open or read to return conflicting information.
Therefore, we may fill the response to stat with benevo-
lent lies that encourage the program to continue, whether
for reading or writing. Each device driver fills in whatever
values in the structure it is able to determine, and then fills
the rest with defaults shown in Figure 6. Or course, if the
device driver can inexpensively determine that the file ac-
tually does not exist (i.e. the FTP SIZE command or the
Chirp Status command) then it may truthfully cause stat to
fail.

The block size field shown in Figure 6 deserves special
mention. In practice, the actual block size of the underlying
device is irrelevant to the file abstraction. As we mentioned,
it is instead used as an optimization parameter. The optimal
block size for a remote protocol may be more of a property
of the network and local environs than the remote storage

GET

CWD

Is a directory. LIST

Access denied.

No such file.

550

Transient error.

200

200

200 other

550

550

Transient error.

Transient error.

other

other

Success.

Figure 7. An Error Interview

device itself. So, PFS allows a file’s blocksize to be cho-
sen by the user through an environment variable, allowing
the buffered I/O interface to seamlessly adapt to protocols
requiring a large I/O granularity.

5.2. Mismatched Results

Several device drivers have the necessary machinery to
carry out all of a user’s possible requests, but provide vague
errors when a supported operation fails. For example, the
FTP driver allows an application to read a file via the GET
command. However, if the GET command fails, the only
available information is the error code 550, which encom-
passes almost any sort of file system error including “no
such file,” “access denied,” and “is a directory.” The POSIX
interface does not permit a catch-all error value – it requires
a specific reason. Which error code should be returned to
the application?

One technique for dealing with this problem is to inter-
view the service in order to narrow down the cause of the
error. This is similar to a standard expert system or the func-
tional error-interview system described in [13]. Figure 7
shows the interview tree for a GET operation. If the GET
should fail, we assume the named file is actually a directory
and attempt to change to it. If that succeeds, the error is
“not a file.” Otherwise, we attempt to LIST the named file.
If that succeeds, the file is present but inaccessible, so the
error is “access denied.” If it fails, the error is finally “no
such file.”

The error interview technique also has some drawbacks.
It significantly increase the latency of failed operations, al-
though it is generally not necessary to optimize error cases.
In addition, the technique is not atomic, so it may deter-
mine an incorrect value of the remote filesystem is simulta-

neously modified by another process.
There is also very large space of infrequent errors that

simply have no expression at all in the application’s inter-
face. A NeST might inform PFS via Chirp that its disk al-
location has expired and been deleted. PFS might discover
that the connection to a Kangaroo server has been broken
by a network failure. An FTP server may inform PFS that
the backing storage is offline. User credentials, such as
Kerberos or GSI certificates, may expire, and no longer be
valid.

Of course, there are many well-known techniques for
hiding such errors. Lots may be re-allocated, lost connec-
tions may be rebuilt, storage may come online again, and
certificates might be renewed by the user. However, all
of these techniques take time and computing resources and
have no guarantee of eventual success. At some point, we
must accept that an error has occured.

There is no honest way to report such errors to the appli-
cation. Reporting “no such file” or “access denied” does not
give the application the information necessary to recover
when the true problem lies elsewhere. This represents a
transient error that must be handled or re-tried by a higher
layer of software. In these cases, PFS forces the process to
exit abnormally.

6. Other Complications

A number of other situations arose in the development of
PFS which deserve elaboration for builders of similar sys-
tems. These include the sharing of state between processes,
the initialization of complex programs, and signal propaga-
tion in interposition agents.

6.1. Process Creation

So far, we have concentrated on the problem of serving
a single process. PFS also works across the creation of new
proceses. This is most useful in the context of an interac-
tive shell, which may create connections to remote devices,
and pass them implicitly as the standard input and output
streams of a new process.

In a standard operating system, this is quite simple. Be-
cause all I/O structures are in the kernel, they are trivially
shared between all processes. Things are more complicated
in PFS, where each process must have its own I/O struc-
tures, yet still be able to share remote files. We cannot
rely on the simple file descriptor inheritance provided by
the operating system, because it preserves the wrong level
of detail. For example, a device driver may hold a socket
open to an FTP server. A child process cannot simply share
this socket without harming the parent’s interaction with
the server. Instead, it must create a new connection by re-
opening at the highest layers of PFS.

name

type

data

csp

file

name

type

data

csp

file

Remote Service

passed
through env

passed
through env

passed
through env

0 1 2

Chirp
Driver

User

0 1 2

Chirp
Driver

User

Program Program

fork

shared
real
csp

Parent Process Child Process

Figure 8. Sharing a File Between Processes

To accomplish this, PFS serializes all of its state when
creating a new process. The child process is given an envi-
ronment variable describing the state of all data structures,
ranging from file descriptors down to device drivers. As the
instance of PFS in the child process initializes, it re-creates
the state of the parent by building all of the necessary data
structures and re-opening files via the device drivers.

This technique allows the child process to begin with the
same file state as the parent had when the child was created.
However, as both processes run, they must continue to share
some state in order that they may interact.

The simplest and most vital sharing is that of file point-
ers. A parent frequently creates a child with a shared output
stream. If the child produces some output, thus advancing
the current seek pointer, the parent must see the changes in
order that its output may append to the child’s, rather than
overwriting it.

We may rely on the host OS for a solution to this prob-
lem. Before creating a new process, PFS allocates a shared
csp from the OS by creating a dummy temporary file and
then deleting it while still open. This file desciptor may be
used for recording the csp of a file externally in a way vis-
ible to all processes that share it. It is also automatically
de-allocated when the last process exits.

This shared csp is distinct from any underlying file de-
scriptors necessary to perform data access. For example, a
file accessed by HTTP and shared between two processes
has one file descriptor in use as a shared csp and another
file descriptor in use as the network connection to the HTTP
server. The former is shared while the latter is private.

The actual sharing of data between files occurs at the
remote service itself. Two related processes writing to a file
will synchronize their position with a shared csp, but the
actual combination of their write operations occurs at the
remote service.

6.2. Program Initialization

Program initialization is a very complicated matter.
Many programs rely on a portion of their code to be ex-
ecuted before the program’s formal entry point (main) or
after the program exits. These hooks include C++ construc-
tors and destructors, the ANSI atexit system, and shared
library initializers and finalizers.

Originally, PFS relied on C++ constructors and destruc-
tors to create and clean up all of the data structures nec-
essary to support an application’s I/O. This created a very
puzzling intermittent problem. Depending on the operating
system, compiler, and the time of day, a process coupled
with PFS would mysteriously crash before it reached its en-
try point or after it exited. The problem was in the order-
ing of global constructors. Specifically, there wasn’t one.
A conforming C++ system call all of the global construc-
tors in different translation units in any order it likes. Thus,
there was no guarantee that PFS would initialize its state be-
fore the application. If an application’s global constructor
performed I/O and happened to be executed before PFS’s
constructor, a crash would occur.

The solution was to simply make PFS self-initializing.
A static variable records whether the necessary data struc-
tures have been created. At the first call to any sort of I/O
operation, the state is checked and the system is initialized.
Thus, constructors could be called in any order with respect
to PFS.

We submit that the general technique of application code
executed implicitly by the system linker or loader is a bad
idea. In fact, the otherwise dense ANSI C++ standard
devotes several pages to this troublesome problem. (See
Section 3.4 in [14]) Nearly any sort of complex initializa-
tion code has a dependency on another subsystem that also

needs initialization. For example, the standard I/O library
certainly depends on the standard memory allocator. To
make computer systems work reliably, an ordering on ini-
tialization must be imposed.

This could be accomplished by the system linker (or
loader.) At build time, the programmer could give a list of
what systems are to be initialized in what order. However,
engineering a large piece of software is complex enough al-
ready. We are very loath to suggest adding a dependency
between the program code and the options given to the sys-
tem linker. A better solution is to make all systems self-
initializing. For example, all entry points to the standard
I/O library may check to see if the standard streams have
been initialized. There are well-known solutions to make
such code thread-safe. If self-initialization causes an un-
necessary overhead, then the subsystem may be initialized
by an explicit call at the beginning of the program.

One might argue that such explicit initialization is an un-
necessary burden on the programmer, and implicit initial-
ization simplifies the program. We disagree. We have al-
ready shown that an explicit initialization list is necessary
for program correctness. It is better to place it in the pro-
gram itself as a portable system-independent list of initial-
izers than to place it in the linker or loader, where it is sure
to be non-portable.

6.3. Signal Handling

In the concluding remarks of our paper describing By-
pass, [35], we note that signal handling is not yet integrated
with the interpositioning technique. Bypass uses a current
layer pointer to track where the program is in the stack com-
posed by the application, interposition agents, and standard
library. The arrival of a signal (incorrectly) does not affect
the current layer pointer. Therefore, a signal-handling func-
tion may call code in an incorrect layer.

If this is not clear, consider the same problem in another
context. An operating system relies on the underlying hard-
ware to switch to supervisor mode when a device interrupt
is raised. Bypass does not switch to supervisor mode (i.e.
the PFS layer) when a software signal is raised.

PFS relies on the correct operation of signals to imple-
ment memory-mapped files. To work around this limitation,
PFS uses two hooks exposed by Bypass to manipulate the
current layer pointer directly. When establishing a memory
mapped file, PFS saves the layer pointer corresponding to
itself. Upon entering the page fault handler, PFS saves the
current layer pointer, and temporarily makes itself the cur-
rent layer. It may then service the page fault using all of
its machinery and the standard library below. Finally, the
current layer pointer is restored before exiting the handler.

7. Related Work

Distributed batch systems are perhaps one of the old-
est general-purpose applications of distributed computing.
Many, such as the Cambridge Ring [27], evolved as a re-
sponse to the expense of centralized computing systems.
Today, a large number of such systems are deployed at
commercial and academic sites, including Condor [25],
LoadLeveler [1] (a descendant of Condor), LSF [38],
Maui [22], NQE [3], and PBS [20]. Several application-
specific batch systems have been built to solve specific
problems, such as SETI@Home [2] and the RC5 [23] chal-
lenges.

Distributed I/O has traditionally been the realm of file
systems. However, we must emphasize that the formula of a
distributed file system as kernel-provided resource does not
match the environment of mistrust and minimalism present
in most distributed batch systems. When borrowing CPU
time from a remote (and possibly anonymous) machine
owner, it is simply not possible to request changes in the
kernel. I/O systems accessible to user-space processes have
generally fallen into two categories. Protocols and systems
such as HTTP [15], FTP [28], GridFTP [5], and GASS [9]
have cast themselves as protocols and interfaces for high-
throughput whole-file movement. Other systems and proto-
cols such as Condor remote I/O [25], RIO [18], Chirp [8],
and Kangaroo [33] perform fine-grained access and remote
files without extensive caching or transfer overhead. Both
models work well with PFS.

Of course, systems other than POSIX may sit at the cen-
ter of the hourglass. Java, MPI, and PVM all have signif-
icant user communities and have found support in various
batch systems such as Condor [36, 37, 29]. Although this
paper relies on POSIX for concrete examples, much of it ap-
plies to other execution systems. We have already discussed
some I/O problems unique to Java in [36].

The term interposition agent was coined by Michael
Jones. A number of techniques for a building interpo-
sition agents have been devised, and an excellent review
is given by Alexandrov, et al. in conjunction with the
UFO [4] system. Other general-purpose toolkits include
Detours [21], mediating connectors [6], and SLIC. [19]
Component systems such as Knit [31] solve the problem
of inter-component initialization by making component de-
pendences explicit to the linker.

Multiplexing of I/O devices is a common technique and
is seen in devices as diverse as the in-kernel Virtual Filesys-
tem Switch (VFS) [24], the user-level Uniform I/O Interface
(UIO) [10], and the server-side NeST [8] multi-protocol
layer. Multiplexing is found in many other contexts such
as the GRAM [12] interface to batch execution, the Proteus
[11] multiprotocol message library, and the Ace [30] system
language for customizable shared-memory algorithms.

Despite the ubiquity of this technique, we are not aware
of any detailed treatment regarding failures and interface
mismatches when forced to used existing interfaces. The
closest such discussion is a report by Craig Metz [26] on the
correct use of the multiplexed Berkeley sockets interface.

8. Conclusion

The Pluggable File System has been used in a variety of
research settings in the Condor project, including research
into I/O communities [34], migratory file systems [7], and
distributed buffering. [33] It continues to be a key compo-
nent of our toolkit for research in distributed systems. We
plan to gradually expand PFS to production settings and add
support for more storage drivers.

Our contribution is an illumination of a unique aspect of
software engineering: error management. Although inter-
positioning and multiplexing are standard techniques, the
emphasis is usually placed upon the transformation of re-
quests and not the interpretation of the results. The results
of file system operations contain important information and
cannot be casually discarded.

We have emphasized the importance of the narrow com-
munication channel between I/O systems and CPU sys-
tems. Although both are designed in isolation, they require
a certain level of integration in order to operate correctly.
PFS has a relatively simple interaction with CPU managers
through such operations as exit and kill. If designed
carefully, a richer interface would allow for powerful in-
teractions while preserving the design independence of I/O
and CPU systems.

Manuals, software, and more details about
the Pluggable File System may be found at
http://www.cs.wisc.edu/ˆcondor/pfs.

References

[1] IBM Load Leveler: User’s Guide. I.B.M. Corporation,
September 1993.

[2] Astronomical and biochemical origins and the search for life
in the universe. In Proceedings of the 5th International Con-
ference on Bioastronomy. Editrice Compositori, Bologna,
Italy, 1997.

[3] Introducing NQE. Technical Report 2153 2.97, Cray Inc.,
Seattle, WA, February 1997.

[4] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
UFO: A personal global file system based on user-level ex-
tensions to the operating system. ACM Transactions on
Computer Systems, pages 207–233, August 1998.

[5] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and
S. Tuecke. Protocols and services for distributed data-
intensive science. In Proceedings of Advanced Computing
and Analysis Techniques in Physics Research (ACAT), pages
161–163, 2000.

[6] R. Balzer and N. Goldman. Mediating connectors. In 19th
IEEE International Conference on Distributed Computing
Systems, June 1999.

[7] J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
M. Livny. Migratory file services for scientific applications.
In preparation, October 2002.

[8] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley,
A. A. Dusseau, R. Arpaci-Dusseau, and M. Livny. Flexibil-
ity, manageability, and performance in a grid storage appli-
ance. In Proceedings of the Eleventh IEEE Symposium on
High Performance Distributed Computing, Edinburgh, Scot-
land, July 2002.

[9] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A data movement and access service for wide area
computing systems. 6th Workshop on I/O in Parallel and
Distributed Systems, May 1999.

[10] D. Cheriton. UIO: A uniform I/O system interface for dis-
tributed systems. ACM Transactions on Computer Systems,
5(1):12–46, February.

[11] K. Chiu, M. Govindaraju, and D. Gannon. The Proteus mul-
tiprotocol library. In Proceedings of the Conference on Su-
percomputing, November 2002.

[12] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. Resource management ar-
chitecture for metacomputing systems. In Proceedings of
the IPPS/SPDP Workshop on Job Scheduling Strategies for
Parallel Processing, pages 62–82, 1998.

[13] K. Efe. A proposed solution to the problem of levels
in error-message generation. ACM Computing Practices,
30(11):948–955, November 1987.

[14] M. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison Wesley, 1992.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol
(HTTP). Internet Engineering Task Force Request for Com-
ments (RFC) 2616, June 1999.

[16] I. Foster and C. Kesselman. Globus: A metacomputing in-
trastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[17] I. Foster and C. Kesselman, editors. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1998.

[18] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Re-
mote I/O: Fast access to distant storage. In Proceedings
of the Workshop on I/O in Parallel and Distributed Systems
(IOPADS), pages 14–25, 1997.

[19] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and T. E. An-
derson. SLIC: An extensibility system for commodity op-
erating systems. In USENIX Annual Technical Conference,
June 1998.

[20] R. Henderson and D. Tweten. Portable batch system: Exter-
nal reference specification. Technical report, NASA, Ames
Research Center, 1996.

[21] G. Hunt and D. Brubacher. Detours: Binary interception
of Win32 functions. Technical Report MSR-TR-98-33, Mi-
crosoft Research, February 1999.

[22] D. Jackson, Q. Snell, and M. Clement. Core algorithms of
the Maui scheduler. In Proceedings of the 7th Workshop on
Job Scheduling Strategies for Parallel Processing, 2001.

[23] B. Kaliski and Y. L. Yin. On the security of the RC5 encryp-
tion algorithm. Technical Report TR-602, RSA Laborato-
ries, September 1998.

[24] S. Kleiman. Vnodes: An architecture for multiple file sys-
tem types in Sun UNIX. In Proceedings of the USENIX
Technical Conference, pages 151–163, 1986.

[25] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[26] C. Metz. Protocol independence using the sockets API.
In Procedings of the USENIX Technical Conference, June
2002.

[27] R. Needham and A. Herbert. The Cambridge Distributed
Computing System. Addison-Wesley, London, 1982.

[28] J. Postel. FTP: File transfer protocol specification. Internet
Engineering Task Force Request for Comments (RFC) 765,
June 1980.

[29] J. Pruyne and M. Livny. Providing resource management
services to parallel applications. In Proceedings of the Sec-
ond Workshop on Environments and Tools for Parallel Sci-
entific Computing, May 1994.

[30] M. Raghavachari and A. Rogers. Ace: a language for paral-
lel programming with customizable protocols. ACM Trans-
actions on Computer Systems (TOCS), 17(3), August 1999.

[31] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component composition for systems software. In Proceed-
ings of the 4th Symposium on Operating Systems Design and
Implementation (OSDI), pages 347–360, San Diego, Cali-
fornia, October 2000.

[32] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
filesystem. In Proceedings of the Summer 1985 USENIX
Conference, pages 119–130, 1985.

[33] D. Thain, J. Basney, S.-C. Son, and M. Livny. The Kanga-
roo approach to data movement on the grid. In Proceedings
of the Tenth IEEE Symposium on High Performance Dis-
tributed Computing (HPDC10), San Francisco, California,
August 2001.

[34] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Gathering at the well: Creating communi-
ties for grid I/O. In Proceedings of Supercomputing 2001,
Denver, Colorado, November 2001.

[35] D. Thain and M. Livny. Multiple bypass: Interposition
agents for distributed computing. Journal of Cluster Com-
puting, 4:39–47, 2001.

[36] D. Thain and M. Livny. Error scope on a computational
grid. In Proceedings of the 11th IEEE Symposium on High
Performance Distributed Computing (HPDC), July 2002.

[37] D. Wright. Cheap cycles from the desktop to the dedicated
cluster: combining opportunisitc and dedicated scheduling
with Condor. In Conference on Linux Clusters: The HPC
Revolution, Champaign-Urbana, Illinois, June 2001.

[38] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a load
sharing facility for large, heterogenous distributed computer
systems. Software: Practice and Experience, 23(12):1305–
1336, December 1993.

