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Abstract

A major hurdle facing data intensive grid applications
is the appropriate handling of failures that occur in the
grid-environment. Implementing the fault-tolerance trans-
parently at the grid-middleware level would make different
data intensive applications fault-tolerant without each hav-
ing to pay a separate cost and reduce the time to grid-based
solution for many scientific problems. We analyzed the fail-
ures encountered by four real-life production data inten-
sive applications: NCSA image processing pipeline, WCER
video processing pipeline, US-CMS pipeline and BMRB
BLAST pipeline. Taking the result of the analysis into ac-
count, we have designed and implemented Phoenix, a trans-
parent middleware-level fault-tolerance layer that detects
failures early, classifies failures into transient and perma-
nent and appropriately handles the transient failures. We
applied our fault-tolerance layer to a prototype of the NCSA
image processing pipeline and considerably improved the
failure handling and report on the insights gained in the
process.

1. Introduction

A major hurdle facing data intensive grid applications
is appropriate handling of failures that occur in the grid-
environment. Most application developers are unaware of
the different types of failures that may occur in the grid
environment. Understanding and handling failures imposes
an undue burden on the application developer already bur-
dened with the development of their complex distributed ap-
plication.

We feel that grid middleware should tolerate grid faults
and make this functionality transparent to the application.
This would enable different data-intensive grid applications
to become fault-tolerant without each having to pay a sep-
arate cost. Removing the burden of understanding and han-
dling failures lets application developers concentrate on the

problem at hand and reduces the time to grid-based solu-
tion for their problem.

We have developed Phoenix, a transparent grid middle-
ware solution that adds fault-tolerance to data intensive grid
application by detecting failures early, classifying failures
into transient and permanent, and handling each transient
failure appropriately.

2. Background

In this section, we give the widely accepted definitions
for faults, errors and failures, discuss the issue of error prop-
agation, and compare our approach to existing related work.

Faults, Errors and Failures

The widely accepted definition, given by Avizienis and
Laprie [3], is as follows. A fault is a violation of a system’s
underlying assumptions. An error is an internal data state
that reflects a fault. A failure is an externally visible devia-
tion from specifications.

A fault need not result in an error nor an error in a fail-
ure. An alpha particle corrupting an unused area of mem-
ory is an example of a fault that does not result in an error.
In the Ethernet link layer of the network stack, a packet col-
lision is an error that does not result in a failure because the
Ethernet layer handles it transparently.

Error Propagation

In a multi-layered distributed system where layers are
developed autonomously, what errors to propagate and what
errors to handle at each level is not well understood [22].
The end-to-end argument [21] states that the right place for
a functionality is the end-point, but that it may be addition-
ally placed in the lower levels for performance reasons.

Pushing all the functionality to the end-point increases
its complexity and requires the end-point developers to un-
derstand all errors that may occur in the underlying layers.



In a grid environment, where application developers are do-
main experts and not necessarily grid experts, requiring ap-
plication developers to understand grid errors would mean
that they might never complete their application.

An alternate approach followed in many multi-layered
systems including the network stack is to make each layer
handle whatever error it can and pass up the rest. This mask-
ing of errors, while reducing higher-level complexity, hurts
the performance of sophisticated higher layers that can use
this error information to adapt.

Thain and Livny [22] have developed a theory of error
propagation. They define error scope as the portion of the
system an error invalidates and state that an error must be
propagated to the program that manages its scope. Applying
their theory, we find that grid errors are of grid-middleware
scope and not necessarily of application scope. Therefore, a
grid middleware layer may handle most grid errors. Aided
by this theory, we decided to add fault-tolerance capability
at the grid-middleware level. To handle the information loss
and to enable sophisticated applications and allow interpo-
sition of adaptation layers between our middleware layer
and the application, we persistently log the errors encoun-
tered and allow tuning of the error masking. Logging of the
errors helps performance tuning and optimization.

Related Work

Medeiros et al. [18] did a survey of failures in the grid en-
vironment and found that 76% of the grid deployers had run
into configuration problems and 48% had encountered mid-
dleware failures. 71% reported that the major difficulty was
diagnosing the failure. Our work looks at only data inten-
sive grid applications and our framework would help in di-
agnosis of failures.

Hwang and Kesselman [13] propose a flexible frame-
work for fault tolerance in the grid consisting of a generic
failure detection service and a flexible failure-handling
framework. The failure detection service uses three no-
tification generators: heartbeat monitor, generic grid
server and the task itself. The failure-handling frame-
work handles failures at task level using retries, replication
and checkpointing and at workflow level using alterna-
tive task, workflow-level redundancy and user-defined
exception handling. Their work looks at only computa-
tion and does not deal with data placement. While heart-
beats may help deal with machines that accept jobs and
do nothing, they would have difficultly dealing with com-
pute nodes in a private network and compute nodes behind
a firewall. Their work does not distinguish between tran-
sient and permanent failures and a loss of heartbeat may
mean a network outage(transient) or a node crash (perma-
nent). Our work classifies failures into transient and perma-
nent and handles each class appropriately and it takes into

account the failures that can occur in data placement in ad-
dition to computational failures.

Gray classified computer bugs into Bohrbugs and
Heisenbugs [11]. Bohrbug is a permanent bug whereas
Heisenbug is a transient bug that may go away on retry.
Our classification of failures into permanent and tran-
sient is similar to Gray’s classification of bugs.

3. Why do Data Intensive Grid Applications
Fail ?

We looked into the different types of failures expe-
rienced by data intensive grid applications by analyzing
logs of four real-life production data intensive applica-
tions: NCSA Image processing pipeline [19], WCER video
pipeline [16],US-CMS pipeline [5] and BMRB BLAST [1,
4] pipeline.

The failures in the order of frequency of occurrence

1. Intermittent wide-area network outages.

2. Data transfers hanging indefinitely. Loss of acknowl-
edgment during third party ftp transfers was the main
culprit.

3. Outages caused by machine crashes and downtime for
hardware/software upgrades and bug fixes.

4. Misbehaving machines caused by misconfigura-
tion and/or buggy software.

5. Data corruption. It happened mostly during data trans-
fer and at times due to faulty hardware in the data stage
and compute machines.

6. Insufficient disk space for staging-in input file or for
writing output file.

7. Trashing of storage server and subsequent timeout due
to too many concurrent read data transfers.

8. Storage Server crash due to too many concurrent write
data transfers.

Failures 1,2,7 and 8 affect mostly data transfers while
3,4,5 and 6 affect both data transfers and computation. In
normal grid applications, computation and data transfer fail-
ures are coupled. Thus, a data transfer failure results in re-
computation. All the four applications realized that to en-
sure forward progress, data transfers failures should be sep-
arated from computational failures and they accomplish this
by decoupling computation and data transfer.

The first three applications treat data transfer as a full-
fledged job and schedule it with Stork [17], a special-
ized data placement scheduler. The BLAST pipeline wraps
the data transfer in a fault-tolerant shell [23]. Doing the
above does not completely solve the problem. The reason



Source URL (protocol://host:port/file) Destination URL (protocol://host:port/file) Error Code (Optional)
gsiftp://quest2.ncsa.uiuc.edu:4050/1/data/1.datgsiftp://beak.cs.wisc.edu:3040/tmp/1.dat 1

Table 1. Information fed to failure agent.

is that Stork following the principle of exokernel [14] im-
plements only mechanisms and expects users and/or higher-
level planners to specify policies. The policy specifies time-
outs after which stork should tag a transfer as hung, num-
ber of retries etc. Ftsh, which is data placement agnostic,
has difficultly cleaning up partially transferred files before
retrying a data transfer and it expects threshold for retries.
These timeouts and thresholds indirectly help the system
classify failures into transient and permanent by stating that
if the problem does not go away within this threshold of re-
tries, it is a permanent failure.

Grid users may not be able to come up with these thresh-
olds as they depend on end-system, network characteristics
and the type of error, things not known at job submission
time. Many grid deployers want the system to handle the
transient failures and notify them about the permanent fail-
ures. They prefer to specify things at a higher level like try
to complete the jobs as quickly as possible using up to X%
extra resources. Expecting them to specify the time-outs and
thresholds makes their job difficult and they usually end up
choosing sub-optimal values.

In the Grid, there would always be some misconfig-
ured/misbehaving machines and these machines may accept
the job and not do anything or be unable to communicate
the result or even worse they may do this for only certain
classes of jobs. The middleware needs to detect such ma-
chines during job execution, treat them as resource failure,
and retry the jobs elsewhere.

4. Achieving Fault-tolerance

We want to achieve fault-tolerance so that only applica-
tion errors result in user perceivable failures while we trans-
parently handle grid failures. To achieve this goal, we need
to be able to first detect failures, then distinguish between
grid failures and application failures, and finally handle the
different grid failures appropriately.

4.1. Strategy for Detecting Failures

Hung transfers that appear like normal transfers and mis-
configured machines that accept jobs and do not return
any result make failure-detection difficult. To handle these,
we use the gridknowledgebase [15] and extract the history
of transfers/computation and fit a distribution to the trans-
fer/compute times. Depending on the user specified thresh-
old of false positives(e.g. 1%, 5%, etc), we set the time-

limit for a transfer/computation to be mean + x(standard-
deviation), where x is derived from the false-positive thresh-
old and the distribution fitted. If no history exists, we do
not set any threshold for the computation, but set a thresh-
old for the data transfer based on a minimal data transfer
rate. If the transfer/computation exceeds the threshold, the
failure-detector stops it and marks it as a failure.

Transfers and computation may also fail with an error
code and they are easy to detect.

4.2. Classifying Failures

After identifying failures, we need to classify them. In
the computation side, researchers have done most of the
work to differentiate between resource failure and appli-
cation failure. Most interfaces report if the job failure was
due to middleware/resource error [10]. New problems en-
countered when jobs run inside a virtual machine like Java
Virtual Machine have been handled by having a wrapper
around the job to correctly propagate the error [22].

On the data placement side, the issue of separating grid
errors from application errors has not been addressed. It is
made difficult by the lack of feedback from the underlying
system and at times, even the underlying system may not
know how to classify the error. For instance, if the source
host is unreachable, either it may mean there is a network
outage (grid error) or that there was a typo in source host in
the data transfer job (application error).

To classify data placement failures, we propose a failure
agent that takes the complete source and destination URL
and optionally the return code, as shown in Table 1, and
identifies the cause of the failure and interacts with the pol-
icy manager and classifies the failure into transient or per-
manent and gives a detailed error status.

Failure Agent

As shown in figure 1, the failure agent identifies the
source of failure as follows. The failure agent checks if the
appropriate DNS server is up.

Next, the failure agents checks if the source and destina-
tion have a valid DNS entry. If any does not, it is likely that
the user made a typo.

If the DNS entry exists, it tries to see if that host net-
work is reachable. If that network is not accessible, it logs
it as wide-area network failure. As the failure agent may
be running on a different network from the source or desti-
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Figure 1. Shows how the failure agent detects
the cause of data transfer failure.

nation, a potential problem arises if the wide area connec-
tivity of the node running the failure agent is down. Then,
the failure agent cannot work properly. We address this is-
sue by running the failure agent on the control node for the
whole processing. The control node is responsible for sub-
mitting the computation and triggering the wide-area data
transfers via third party transfers. If connectivity of control
node is down, it cannot start transfers and our scheme works
well by marking that as wide-area network outage.

If the host network is reachable, failure agent tries to
check if the host is up. If the host is down, it reports that.

After reaching the host, it tests if that protocol is avail-
able on that host. If all that works fine, for both hosts, it
could be some problem with credential or some misconfig-
uration. The failure agent tries to authenticate that user to
the system and sees if that goes fine. If it fails, it is an au-
thentication problem.

After authentication, it checks for the access to source
file and ability to write to destination file. If any fail, it logs
the appropriate error. If the system gives enough feedback,
the failure agent tries to differentiate between source file
not existing and lack of permission to access the source file.
Similarly, for destination file, it tries to distinguish between

being unable to create the destination file, lack of permis-
sion to write to destination file and being unable to write
any data to the destination file. The next step may be to try
to transfer some dummy data to see if the server works. Op-
tionally, this part can use a test suite that can test a data
transfer service.

Authenticating the user, checking permission and run-
ning test transfers requires that the failure agent has the user
credentials and the failure agent handles this by interacting
with the data placement scheduler.

The user can specify policies that influence the working
of the failure agent. For instance, users can specify the or-
der of preference for methods to probe if the host is reach-
able. At times, users may have an unconventional setup that
may confuse the failure agent and the policy mechanism al-
lows sophisticated users to tune it to handle those cases. An
example is a packet filter that is set to drop all probe pack-
ets.

4.3. Failure Manager

The failure manager is responsible for coming up with
a strategy to handle transient failures. Users can influence
these decisions that failure manager makes by specifying
policies. Many storage systems have maintenance windows
and the user policy can specify that. For instance, if the user
specifies that the storage server has a maintenance window
every Sunday between 4 a.m. and 8 a.m., then if the storage
server is unreachable during that time, the failure manager
would retry the transfer after the maintenance window. Fur-
ther, some users want the system administrator notified via
email if a node is down and they can specify that in the pol-
icy. Some users may have hard limits for certain jobs i.e.
they want the job completed within a time limit and they do
not want the system to execute that job after the time limit.
The user may specify this as a policy. Users can also tune
the exponential back off strategy and can even explicitly
state a strategy for the different transient failures. If users
do not want to specify the policy, they can tune the pro-
vided policy to their preference.

If the failure manager stores information about previous
failures, it can use it to adapt its strategy on the fly. For in-
stance, the first strategy chosen by the failure manager may
not be good enough if the failure occurs again and using his-
tory, it can find out the strategies that worked well and those
that did not and use it to refine future strategies. Since main-
taining this state in a persistent manner and recovering from
crashes considerably increases the complexity of the failure
manager, we have enhanced the grid knowledgebase to store
the failure information. An advantage of this is that differ-
ent failure managers can share the knowledge about failure
enabling each to make better decision. Keeping the failure



manager stateless simplifies its design and makes crash re-
covery simple.

For permanent failures, we need to either consult a
higher-level planner or pass the failure to the application.

4.4. Checking Data Integrity

Even though the data transfer may have completed suc-
cessfully, the transferred file may have been corrupted. The
only way of verifying this is through end-to-end check-
sum, i.e. compute source checksum(if it is not already avail-
able) and destination checksum and verify that they both
match. If we cannot run computation on the destination stor-
age server, we may need to download the written data to a
nearby node and compute checksum on it and use that as
the destination checksum.

As there is a significant cost associated with checksum,
some users may not want to perform checksum on all the
data. To help them, we have a data integrity manager that
allows users to specify preference on the percentage of data
they are willing to checksum. The data integrity manager
turns on checksum for certain of the transfers and does this
in a statistically unbiased manner.

Whenever a transfer fails a checksum, the data integrity
manager figures out the cause of the data corruption and
takes a suitable action based on user specified policy. For
instance, if a compute node caused the data corruption, a
conservative policy may be to recompute all data generated
since the previously verified checksum. Another policy may
be to try to do a binary search, by recomputing the results
at different points and comparing the checksum of the re-
sult with that from the corrupted node. This may help us
get a smaller window where the node started corrupting the
data. It also depends to certain extent on the type of fail-
ure. Both the policies may not work if the node corrupts
only some of the computation data, with the conservative
being better.

The integrity manager can send out email to the appro-
priate party about the source of data corruption. It can also
feed the information to the job policy manager to avoid the
repeat of the problem. For instance, if a computation node
corrupts data, it will make sure that jobs do not run on that
node again until it is fixed.

For users who do not want to perform checksums but
want to verify that all of the data has been transferred, we
provide an option that verifies that the source and destina-
tion file sizes are same in addition to checking that suc-
cess is returned by the protocol. We did this when we en-
countered protocol bugs with certain protocol that return
success when only a part of the data has been transferred.
This occurred in SRB protocol when the destination disk
got full. Users can use this as an optimization before check-
ing checksum, as the system does not have to compute the
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Figure 2. Shows how the different compo-
nents fit together.

checksum when the source and destination file sizes do not
match.

4.5. Phoenix: Putting the Pieces Together

Figure 2 shows the overview of how the different pieces
of fault-tolerant middleware fit together.

The failure detector scans the user log files of computa-
tion scheduler and data placement scheduler to detect fail-
ures. It interacts with the gridknowledgebase to detect hung
transfers and run-away computation. After detecting fail-
ures, it passes that information to the failure manager. For
data placement failures, the failure manager consults the
failure agent to find out the cause of the failure. The fail-
ure agent identifies the cause and classifies the data place-
ment failures taking into account user specified policies ac-
quired from the policy manager. The failure manager con-
sults the policy manager and comes up with a strategy to
handle the transient failures. It also logs the failure status in-
formation to grid knowledgebase to share that information
with other failure managers and to build history to adapt it-
self.

The data integrity manager based on user policy turns on
file size verification and checksum computation and verifi-
cation for a certain percentage of the data transfers. When
a transfer fails the file size verification or checksum verifi-
cation, it interacts with the data placement scheduler to re-
transfer that data.

The failure detector, failure manager, failure agent, pol-
icy manager and data integrity together constitute Phoenix,
our fault-tolerant middleware layer.

Logging the failures and the strategy taken lets users
know the failures encountered. This is useful to address the
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earlier mentioned information loss when lower layers han-
dle the faults encountered. So, a sophisticated higher layer,
either the application or a smart layer between Phoenix and
application can use this information to tweak policies of
Phoenix and may even convert Phoenix policies into mech-
anisms by applying the infokernel [2] approach.

5. Framework

While the components we designed and implemented
can be easily integrating into existing systems, we found
that many users wanted a full-system solution. To address
this we designed and implemented a framework that in-
tegrates our fault tolerance components. Our system uses
Condor/Condor-G as the computation scheduler. As most

of the grid users used Condor-G to submit their grid jobs to
Grid2003 [12], they can easily employ our system and ben-
efit from it.

The user submits a DAG specifying the different jobs and
the dependencies between jobs to DAGMan and specifies
the policy in ClassAd format [6, 7, 20]. DAGMan submits
the computation jobs to Condor/Condor-G and data place-
ment jobs to Stork.

Phoenix keeps monitoring Condor and Stork user log
files to detect failures. It uses the gridknowledgebase to ex-
tract the history and uses it to detect hung transfers and com-
putation.

Taking into account user specified policies, Phoenix clas-
sifies failures into transient and permanent and comes up
with a suitable strategy to handle transient failures.
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Figure 4. Shows how the failure agent detects
the cause of data transfer failure.

It logs both the failure and the strategy taken to the grid-
knowledgebase. Logging the failure allows users to query
the gridknowledgebase for encountered failures. Phoenix
can potentially use this to adapt its strategy on the fly.

Phoenix can also turn on checksum and file size verifi-
cation in a statistically unbiased manner for the specified
percentage of transfers. In the current form, it does not sup-
port checksum if the destination file server does not allow
checksum computation to be performed. The difficulty is to
come up with a suitable host to transfer the data and ver-
ify the checksum and to detect, in a low overhead manner,
if this host is corrupting the data.

At present, Phoenix passes permanent failures to the ap-
plication.

6. Insights from NCSA Image processing
pipeline prototype

The NCSA image processing pipeline prototype in-
volved moving 2611 1.1 GB files(around 3 terabytes) data
from SRB mass storage system at San Diego Super Com-
puting Center, CA to NCSA mass storage system at
Urbana-Champagne, IL and then processing the images us-
ing the compute resources at NCSA, Starlight Chicago and
UW-Madison.

During the processing, there was an SRB maintenance
window of close to 6 hours. The figure 4 shows the pipeline
recovering from this transient failure.

Figure 5 gives information about 354 data transfers each
transferring a different 1.1 GB file with 10 transfers pro-
ceeding concurrently. It shows the cumulative distribution
of the data transfer times and the number of jobs execut-
ing concurrently and the number of jobs completed over a
120-hour period.

Ignoring the outliers, most of the transfers take less than
30 minutes with a standard deviation of 9 minutes. Of the
6 outliers, 3 outliers take 2 1/2 hours each and other three
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Figure 5. Shows the case of hung data trans-
fers. Without Phoenix, users had to manually
detect such failures

vary between 12 to 96 hours. A simple kill and restart of the
outlier data transfer would have resulted in those transfer
completing much earlier. Such variations happen because
of Heisenbugs and using Phoenix, we can detect them early
and retry them to success considerably improving the over-
all throughput.

7. Future Work

We plan to integrate the fault tolerance layer with the
production NCSA image processing pipeline and WCER
video pipeline. We are also considering interfacing our sys-
tem with higher-level planners like Pegasus [8,9].

8. Conclusions

We have successfully designed and implemented
Phoenix, a fault tolerant middleware layer that transpar-
ently makes data intensive grid applications fault-tolerant.
Its unique feature includes detecting hung transfers and
misbehaving machines, classifying failures into perma-
nent, transient, and coming up with suitable strategy
taking into account user specified policy to handle tran-
sient failures. It also handles information loss problem
associated with building error handling in lower lay-
ers by persistently logging failures to gridknowledgebase
and allowing sophisticated application to use this in-



formation to tune it. Using a prototype of a real life
NCSA pipeline, we show the usefulness of Phoenix’s fea-
tures.
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