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Abstract

Federated distributed systems present new challenges to resource management.

Conventional resource managers are based on a relatively static resource model

and a centralized allocator that assigns resources to customers. Distributed envi-

ronments, particularly those built to support high-throughput computing (HTC),

are often characterized by distributed management and distributed ownership.

Distributed management introduces resource heterogeneity : Not only the set of

available resources, but even the set of resource types is constantly changing.

Distributed ownership introduces policy heterogeneity : Each resource may have

its own idiosyncratic allocation policy.

We propose a resource management framework based on a matchmaking

paradigm to address these shortcomings. Matchmaking services enable discov-

ery and exchange of goods and services in marketplaces. Agents that provide

or require services advertise their presence by publishing constraints and pref-

erences on the entities they would like to be matched with, as well as their own

characteristics. A matchmaker uses a matching operation to discover pairings

between compatible agents. Since the notion of “compatible” is completely de-

termined by the content of agent classified advertisements (classads), a match-

maker can match classads from different kinds of entities in a general manner.

Matched agents activate a separate claiming protocol to confirm the match
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and establish an allocation. The resulting framework is robust, scalable, flexi-

ble and evolvable, and has been demonstrated in Condor, a production-quality

distributed high throughput computing system developed at the University of

Wisconsin-Madison.

The goal of this dissertation is to show the power, flexibility, desirability and

feasibility of resource management through matchmaking. We detail the archi-

tecture and operation of matchmaking frameworks, and describe mechanisms

to implement the components and interactions in such systems.

We describe the architecture of a matchmaking framework that distinguishes

itself by providing both bilateral and multilateral matchmaking (i.e., gang-

matching) services. The classad language, a semi-structured agent specification

language, is presented, and an indexing model for the classad data model is

defined. The indexing solution tolerates the lax semantics of semi-structured

data models, and indexes both classad attributes and constraints to efficiently

identify compatible advertisements. Finally, algorithms that implement the pro-

posed gangmatching model are described, and their performance characteristics

analyzed.
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Chapter 1

Introduction

Conventional resource management systems assume a system model, which is

an abstraction of the underlying resources, to describe the availability, perfor-

mance characteristics and allocation policies of the resources being managed. A

centralized allocator consults the system model to establish and maintain cur-

rent and future allocation information in schedules. Indeed, one of the primary

activities of conventional resource managers is the creation of efficient alloca-

tion schedules, which are usually constructed to optimize a given performance

metric, such as response time, utilization, or system throughput. Such resource

management strategies work well in high performance scheduling regimes, where

resources are relatively static and dedicated, time constraints on schedules are

tight, and resource usage patterns are firmly legislated and policed.

However, resources in many distributed environments cannot be described

by system models, and therefore cannot be managed by conventional resource

management systems. Issues that obstruct formulation of monolithic system

models include:
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1. Distributed Ownership. In many environments, resources such as power-

ful commodity workstations are assigned to (and therefore “owned” by)

single users and small groups. Each resource in such distributively owned

environments can exhibit a unique usage pattern and allocation policy,

which can vary from indifferent to idiosyncratic. For example, an owner

may institute a policy on a workstation that states that a foreign job can

be run on the machine only if it was submitted by a member of a par-

ticular group, or if the job is run between 6 p.m. and 6 a.m., or if the

keyboard has been idle for more than fifteen minutes and the load average

is less than 0.3. The behavior of such resources, which transit between

available and unavailable states nondeterministically, cannot be captured

in predictive system models.

2. Resource Failure. Even the most carefully constructed allocation schedules

can be frustrated by resource failure. System crashes due to hardware

faults, software bugs or power outages are inherently unpredictable, and

not uncommon. Furthermore, the probability of system failure rises as

the number of resources in the environment increases. When resources

that are relied on fail, guarantees made by the allocator to customers in

terms of response time or reserved time slots must be retracted, greatly

diminishing the benefits of creating allocation schedules.

3. Heterogeneity. The semantics of “allocating” a resource to a customer
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depends significantly on the type of resource being allocated. For exam-

ple, the specific semantics of allocating a compute node to a customer

is very different from allocating network bandwidth or storage space. It

is extremely difficult to capture the varied allocation semantics of both

single resources and groups of resources (as might be required when co-

scheduling) in a unified system model. The problem of heterogeneity is

exacerbated by pool evolution (discussed shortly): even if a unified sys-

tem model could be constructed, the model would have to be modified

frequently.

4. Evolution. Most resource pools exhibit almost continuous evolution. Given

the rapid development pace and cost depreciation of technology, it is com-

mon for resources to be modified, upgraded or even completely replaced

relatively often. Pool evolution affects the construction of system mod-

els in two ways. First, the resource must be temporarily or permanently

retracted from the pool, affecting allocation schedules. Second, the re-

placed or upgraded resource must be re-introduced into the environment,

requiring a change to the system model.

In light of these difficulties, the need for a resource management paradigm that

does not require a monolithic system model is clear. We propose a matchmaking

resource management solution to address the above problems.
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1.1 Matchmaking

The underlying ideas of matchmaking are simple. Servers and customers adver-

tise their presence to a common advertising service by describing their character-

istics in advertisements. These advertisements also contain qualitative descrip-

tions of the entities the agents would like to be matched with. A matchmaker

discovers compatible providers and customers with a generic matching opera-

tion and notifies the matched agents, which then employ a protocol to connect

to each other and enable exchange of service.

The matchmaking-based resource management paradigm avoids the prob-

lems associated with defining system models and allocation schedules by using

an opportunistic scheduling paradigm: Resources are used as soon as they be-

come available, and applications are migrated from resources that become un-

available. While this paradigm is not optimal for high-performance computing,

the paradigm works well for high-throughput computing, where robustness and

availability of the environment are very significant factors [37]. The matchmak-

ing scheme has been validated in the Condor [35, 36] high throughput comput-

ing system developed at University of Wisconsin-Madison. Condor is heavily

used by scientists at numerous sites around the world, and derives much of its

robustness and efficiency from the matchmaking architecture.



5

1.1.1 Philosophy and Architecture

A fundamental observation that drives most of our work is that the dynamics of

large heterogeneous and distributed environments require resource management

paradigms that approximate the discovery and exchange of goods and services

in marketplaces. With this observation in mind, we identify three essential

features that guide the design of our framework.

1. We require that the framework be decentralized not only at a physical

level, but at a policy level as well. Thus, we require that there be no

central authority that dictates how resources or customers may represent

themselves, what their local policies may be, or how they may claim each

other when matched.

2. Mechanisms and facilities provided to customers should also be made avail-

able to servers. Mechanisms available to one set of parties but not another

reflect (usually undesirable) assumptions about the behavior of participat-

ing principals.

3. The environment must present the image of a single “clearing house” of

providers and requesters. This requirement greatly simplifies the specifi-

cation of policies for both servers and customers, since there is an easily

definable global notion of the “best match candidate.”

A detailed discussion of these requirements is presented in Chapter 3.
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1.1.2 Components

The main actions involved in the matchmaking process are advertising, match-

ing, notification and claiming. The above interactions between the matchmaker

and other principals participating in the matchmaking environment motivate

the definition of the following components of a matchmaking service.

1. A language for specifying the characteristics, constraints and preferences

of principals. Our framework uses the classified advertisement (classad)

language for this purpose. Figure 1 shows a classad representing a work-

station. The Constraint attribute indicates that the workstation only

runs jobs when it is idle (as determined by load average and keyboard

idle time) and if the job’s image size is 15 megabytes less than the phys-

ical memory size of the machine, with a preference for jobs submitted

by user “raman.” The classad language is a symmetric description lan-

guage; both servers and customers use the same language to describe their

respective characteristics, constraints and preferences. Among other con-

structs that allow entities to be easily represented, the language supports

semi-structured “records” that are used as the descriptions themselves,

and dynamic typing with special undefined and error values that en-

able robust evaluation semantics in heterogeneous environments.

2. The Matchmaker Protocol is composed of the publishing protocol and noti-

fication protocol that respectively describe how agents communicate with
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[
Type = "Machine";
Activity = "Idle";
KeybrdIdle = ’00:23:12’; // h:m:s
Disk = 323.4M; // mbytes
Memory = 64M; // mbytes
State = "Unclaimed";
LoadAvg = 0.042969;
Mips = 104;
Arch = "INTEL";
OpSys = "SOLARIS251";
KFlops = 21893;
Name = "foo.cs.wisc.edu";
Rank = other.Owner=="raman" ? 1 : 0;
Constraint = other.Type == "Job"

&& LoadAvg < 0.3 && KeybrdIdle>’00:15’
&& Memory - other.ImageSize>=15M

]

Figure 1: A classad describing a workstation

the matchmaker to post advertisements and receive notifications.

3. The Matchmaking Algorithm is used by the matchmaker to create matches.

In the abstract, the matchmaking algorithm relates the contents of sub-

mitted classads and the state of the system to the matches that will be

created. As part of this process, the algorithm defines a set of conven-

tions (an advertising protocol) which binds meanings to certain classad

attributes that will be used for special purposes. For example, a match-

maker may define that in any classad, the attributes named Constraint

and Rank will be respectively treated as the constraints and preferences

defined by the advertising entity.
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4. The Claiming Protocol is activated between the matched parties to con-

firm the match and establish a working relationship. In our resource

management framework, we require that the locus of control for claiming

reside in the matched agents themselves. An important motivation for

this requirement is that, in our framework, a match between A and B is

not the same as allocating A to B. Instead, the match is permission for A

and B to cooperate — it is the agents’ responsibility to verify the match

and decide if cooperation is still desirable. Either entity may choose to

not go further and reject the match altogether.

1.1.3 Advantages

Realizing opportunistic scheduling through matchmaking addresses several of

the problems associated with creating system models and allocation schedules.

1. The expressive nature of the classad language addresses the problems of

heterogeneity and distributed ownership associated with conventional re-

source management systems. Sophisticated policies placed on resources

by resource owners can be expressed and enforced. The language allows

various kinds of entities to enter the environment and represent themselves

effectively without requiring any change to the matchmaker in terms of

schema evolution or resource-specific modifications. Thus a classad-based

matchmaking framework facilitates management of distributively owned,

heterogeneous resource environments.
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2. By placing time-outs on advertisements, common problems associated

with resource failure and evolution can be avoided: when a resource fails

or is temporarily removed from the environment for upgrade, it “ceases

to exist” after its advertisement expires. (A modified resource re-enters

the pool in the same manner as a completely new resource.) Heart-beat

protocols can be piggy-backed on advertisement updates for dynamic in-

formation (such as load average), with which the state of the environment

can be deduced fairly accurately. Matches made with stale advertisements

can be efficiently detected and handled by the claiming protocol, as will

be discussed shortly.

A key idea of matchmaking is that “resource allocation” is a two step pro-

cess: matching and claiming. Matching is performed in a centralized manner

to enforce fairness with pool-wide priority mechanisms. Centralized matchmak-

ing also provides all servers and customers with wide access to the classads of

all potential agents they would like to be matched with and facilitates easier

administration and control. In contrast, the claiming phase of the operation is

performed in a distributed manner.

The separation of allocation into matching and claiming has several benefits.

Weak consistency requirements. Since the state of service providers and

requesters may be continuously changing, there is a possibility that the

matchmaker made a match with a stale advertisement. Claiming allows

the provider and customer to verify their constraints with respect to their
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current state. This toleration of weak consistency makes the remainder of

the system significantly simpler, more robust, and more efficient.

Authentication. The claiming protocol may use cryptographic techniques for

the provider and customer to convince each other of their identities. A

challenge-response handshake can be added to the claiming protocol at

very little cost.

Bilateral specialization. In dynamic heterogeneous environments, it is very

difficult to write a matchmaker that is aware of the specifics of allocating

all the different kinds of resources that may be added to the environment.

Indeed, the myriad kinds of resources already present in the environment

may itself present the problem of packing all the resource specific alloca-

tion code in the matchmaker.

By pushing the establishment of allocation to the claiming stage, the de-

tails of allocation are contained in the entities that really need to interact

with specific kinds of providers and customers. The matchmaker may be

written as a general service that does not depend on the kinds of services

and resources that are being matched.

Bilateral specification implies that since the system does not assume a

single monolithic or static allocation model, the allocation models are

supplied by the entities involved in providing and using services. The
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matchmaking framework thus allows several dissimilar “allocation mod-

els” to coexist in the same resource management environment.

End-to-end verification [45]. The principals involved in a match are them-

selves responsible for establishing, maintaining and servicing a match. The

matchmaker only holds a “soft state” representation of active claims for

accounting purposes, a fact that simplifies recovery in case of failure and

makes the system more scalable.

1.2 Overview of the Dissertation

The goal of this body of work is to demonstrate the power, flexibility, feasibility

and desirability of matchmaking as a resource management paradigm. As such,

we identify all the primary components and interactions that must exist in a

matchmaking environment, and describe mechanisms to address the difficulties

that arise when deploying such a framework in a resource management context.

A fundamental notion in any matchmaking environment is entity description,

which is accomplished with the use of a description language. In Chapter 2, we

describe in detail the design goals, structure and semantics of the description

language used in our matchmaking framework, the classified advertisement (or

classad) language.

The architecture of our matchmaking model is detailed in Chapter 3. While

utilization of the matchmaking paradigm in resource management is in itself
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a unique proposition, the proposed model also distinguishes itself in providing

both bilateral and multilateral matchmaking services. The issues of advertise-

ment and advertisement mechanisms are addressed, the semantics of matches

are described, and the functionality implications of notification and claiming

protocols are discussed.

Although the classad language affords a relatively light-weight mechanism

to test for advertisement compatibility, the presence of a large number of servers

and customers in a resource management environment can still place a signif-

icant load on the matchmaking process. However, due to the database rep-

resentation of classads, indexing technologies may be utilized to significantly

decrease the cost of identifying compatible classads. In Chapter 4, we present

a complete indexing solution developed for the semi-structured classad data

model which, when presented with a classad, efficiently identifies all possible

candidate matches by indexing both attributes and constraints. The indexing

scheme has been designed to work as a component of both bilateral and mul-

tilateral matchmaking algorithms, and makes very significant improvements to

overall matchmaking performance.

Algorithms for multilateral matchmaking are significantly more complex

than their bilateral counterparts. Multilateral matchmaking is fundamentally a

combinatorial algorithm, which results in extremely large execution times even

for problems of moderate size if solved with naive algorithms. In Chapter 5, we
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describe several gangmatching algorithms and present the results of a perfor-

mance study.

Matchmaking for resource management is a new area, and although this

body of work identifies and addresses many fundamental issues, the problem has

many aspects that are worth further investigation. In Chapter 6, we summarize

our work, present our contributions and identify directions for future research

and study.
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Chapter 2

The Classified Advertisements

Language

A fundamental component of any matchmaking environment is the language

used to describe entities in advertisements. The advertisement language serves

as a common communication substrate to enable the various principals to inter-

act with each other and communicate their notions of “compatibility” concisely

and unambiguously. As such, the flexibility, robustness and inherent complex-

ity of an advertisement language has profound implications on the functionality

and efficiency of a matchmaking environment.

In this chapter, we describe the classified advertisement (classad) language,

which is a simple, expressive and flexible language employed by our framework.

We begin with a discussion of the desired properties of an advertisement lan-

guage to motivate and justify our design. We then present a brief overview of

the main characteristics of the language in the context of matchmaking, fol-

lowed by a more detailed description of the language’s structure and semantics.

Concrete examples of non-trivial and practical policies are then encapsulated in

classads and presented to exemplify the salient features of the language. Certain
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classad processing algorithms are extremely useful as fundamental operations

in defining more complex algorithms that streamline the matchmaking process.

We describe these algorithms and their usefulness in the context of the match-

making scheme, and conclude with a brief survey of related work.

2.1 Design Goals

The matchmaking framework design principles of symmetry and decentraliza-

tion provide very specific language design directions: clearly, both requests and

offers must be similar in structure, and no centralized schema may be used.

These points and other key design issues are enumerated below.

1. Symmetric. As discussed earlier, a key requirement of our matchmaking

framework is that the matchmaking model and mechanisms be symmetric

to both providers and requesters. This requirement includes the adver-

tisement language too. The implication of this requirement is that the

advertisement language must be powerful and flexible enough to subsume

the functionality of traditional resource description and resource selection

languages commonly found in conventional resource management systems.

We also require the language to provide the dual properties of customer

description and customer selection.

2. Semi-structured. The proscription of centralized control (and hence
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centralized schema management) naturally suggests the use of a semi-

structured model as the basis of the description language. Semi-structured

data models (such as XML [9]) are finding widespread acceptance due to

their flexibility in managing heterogeneous and distributed information.

In the context of matchmaking, the use of a semi-structured data model

would facilitate the representation of heterogeneous entities, but also in-

troduce the problem of determining compatibility with partial or missing

information. Our solutions to these (and other) problems associated with

the adoption of a semi-structured model are discussed shortly.

3. Declarative. We require that the advertisement language be declara-

tive rather than procedural. By this we mean that advertisements should

describe notions of compatibility “qualitatively,” rather than specifying

a procedure for determining compatibility. The significant advantages

that declarative specifications provide over their procedural counterparts,

especially with regard to alternative implementation strategies and opti-

mization, are well known. In addition, declarative specifications simplify

the process of specifying, understanding and maintaining policy specifica-

tions.

4. Simple. It is extremely important for an advertising language to be sim-

ple both syntactically and semantically. A complex specification language
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is less amenable to efficient and correct implementation. Complex lan-

guages also compound the process of specifying and understanding poli-

cies, making both manual and automatic policy management difficult.

Experience with resource owners in practice have shown that although

policies may be complex with respect to the number of variables involved,

policies are fundamentally simple predicates which do not require a pow-

erful Turing-complete language to be specified. The use of a non-Turing-

complete advertisement language also avoids “Halting Problem” issues, so

compatibility between classads may be tested at low, known costs.

5. Portable. A key advantage of matchmaking systems is their ability

to manage heterogeneity naturally and efficiently. However, this prop-

erty is predicated on the portability of the advertisement language itself.

Specifically, the language must be amenable to efficient implementation

on various hardware and software platforms. Thus, it is not reasonable

to introduce language features that require specific features of the host

architecture that may not be widespread.

2.2 Overview

The classad language is a simple expression-based language that has been de-

signed to meet the above design goals. The central construct of the language

is the classad, which is a record-like structure composed of a finite number
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of distinctly named expressions, as illustrated in Figure 2. Classads are used

as attribute lists by entities to describe their characteristics, constraints and

preferences. Since whole expressions (and not just scalar values) are bound to

attribute names, classads can naturally accommodate the predicate-like con-

straints used by principals to define their policy requirements. Similarly, prefer-

ences are specified as expressions that are evaluated to numeric values denoting

the “goodness” of candidate matches.

[
Type = "Job";
QDate = ’Mon Jan 11 10:53:31 1999 (CST) -06:00’;
CompletionDate = undefined;
Owner = "raman";
Cmd = "run_sim";
WantRemoteSyscalls = true;
WantCheckpoint = true;
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
ImageSize = 31M;
Rank = other.KFlops/1E3 + other.Memory/32;
Constraint = other.Type == "Machine" &&

other.Arch=="INTEL" && other.OpSys=="SOLARIS251" &&
other.VirtualMemory > self.ImageSize

]

Figure 2: A classad describing a submitted job

The classad language differentiates between expressions and values: Expres-

sions are evaluable language constructs obtained by parsing valid expression

syntax, whereas values are the results of evaluating expressions. The classad

language employs dynamic typing (or latent typing), so only values (and not

expressions) have types. The language has a rich set of types and values which
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includes many traditional values (numeric, string, boolean), non-traditional val-

ues (timestamps, time intervals) and some esoteric values, such as undefined

and error. Undefined is generated when an attribute reference cannot be

resolved, and error is generated when there are type errors. In a sense, all clas-

sad operators are total functions, since they have a defined semantics for every

possible operand value, facilitating robust evaluation semantics in the uncertain

semi-structured environment.

Classads may be nested to yield a hierarchical name-space, in which case lex-

ical scoping is used to resolve attribute references. The scoping features of the

language in context of the “match evaluation environment” established by the

matchmaker to test matches result in the semantics that an attribute reference

made from either customer or resource classad of the form “other.attribute-

name” refers to an attribute named attribute-name of the other ad. In addi-

tion, every classad has a builtin attribute self which evaluates to the inner-

most classad containing the reference, so the reference “self.attribute-name”

refers to an attribute of the ad containing the reference. If neither self nor

other is mentioned explicitly, the evaluation mechanism assumes the self pre-

fix. For example, in the Constraint of the job ad in Figure 2, the sub-expression

other.VirtualMemory > self.ImageSize expresses the requirement that the

target machine have sufficient virtual memory to accommodate the requirements

of the job. The expression could also have been written other.VirtualMemory

> ImageSize.
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A reference to a non-existent attribute evaluates to the constant undefined.

Most operators are “strict” with respect to this value—if either operand is

undefined, the result is undefined. In particular, comparison operators are

strict, so that

other.Memory > 32,

other.Memory == 32,

other.Memory != 32,

and

!(other.Memory == 32)

all evaluate to undefined if the target classad has no Memory attribute. The

Boolean operators || and && are non-strict on both arguments, so that

other.Mips >= 10 || other.Kflops >= 1000

evaluates to true whenever either of the attributes Mips or Kflops exists and

satisfies the indicated bound. There are also non-strict operators is and isnt,

which always return Boolean results (not undefined), allowing explicit com-

parisons to the constant undefined as in

other.Memory is undefined || other.Memory < 32.
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2.3 Types and Values

We view types as a partitioning of the universe of values in the language, where

every partition is non-empty. To aid in the unambiguous definition of language

semantics, we define fixed internal implementation representations for certain

values (such as numbers), while leaving representations of other values unspec-

ified.

Values in the classad language may be one of the following types.

Undefined. The undefined type has exactly one value: the undefined value.

As its name suggests, the undefined value represents incomplete or un-

known evaluation results due to absent information. The adoption of a

semi-structured data model requires the inclusion of an undefined (or

similar) value for robust evaluation semantics.

Error. The error type has exactly one value: the error value. Similar to the

undefined value, the error value plays an important part in securing

robust evaluation semantics in semi-structured environments. While the

undefined value represents missing information, the error value repre-

sents incorrect or incompatible information, and is usually generated when

operators are supplied with values that are outside the domains of their

operands. For example, the quotient of a number and a string is error.

Boolean. There are exactly two distinct boolean values: false and true. Un-

like their C and C++ counterparts, boolean values are not considered



22

numeric values, and therefore cannot be directly used in numeric expres-

sions.

String. String values are finite sequences of non-zero 8-bit ASCII characters.

There is no a priori limit of the length of string values.

Integer. Integer values are signed 32-bit two’s complement numbers.

Real. Real values are IEEE-754 double precision numbers.

Absolute Time. Absolute time values are non-negative discrete integral val-

ues recording the number of seconds elapsed between the UNIX epoch

(i.e., 1 January 1970) and the timestamp represented by the value. Ab-

solute time values must be able to represent the largest integer value as a

valid timestamp.

Relative Time. Relative time values are discrete integral values that represent

time intervals in seconds. Relative time values may be negative or zero.

The cardinality of the relative time value set must be at least as large as

the set of integer values.

Classad. Classad values are finite sets of (identifier , expression) pairs, where

each identifier is distinct (ignoring case). Identifiers are strings of al-

phanumeric characters and underscores, which begin with non-numeric

characters. Classad values additionally indicate (directly or indirectly)

the presence of a parent classad (or parent scope), which is the closest
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enclosing classad. If a classad is not lexically nested, it is called a toplevel

(or root) classad, and its corresponding value does not have a parent scope

component.

List. List values are finite sequences of expressions.

Pedantically, classad and list values do not have external representations — only

classad and list expressions do.1 This situation is similar to lambda expressions

and closures in LISP/Scheme.

2.4 Expressions and Evaluation Semantics

The majority of the classad language is straightforward and familiar, with some

modest extensions. Most of the subtlety of the classad language lies in the

treatment of attribute references, which operate in a lexical scoping formalism,

but may also explicitly traverse the hierarchical classad namespace during an

evaluation to access an attribute.

All expression evaluations occur in the context of a given classad, which

may be nested arbitrarily deep inside other classads. However, for any given

expression evaluation, there is a single unique outermost classad that is not

nested. We designate this classad the root (or toplevel) classad.

1Pragmatically, however, the scope information associated with these values may be ig-
nored to provide a usable external representation if interpreted in context.
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2.4.1 ClassAd Expressions

A classad is constructed with the mixfix classad construction operator, as shown

in the syntax schema below.

[name0 = expr 0 ; name1 = expr1 ; . . . ; namen = exprn ]

Each namei is a unique identifier, and each expr i is an expression. A classad

expression evaluates to a classad value. Every classad value has three implicit

attributes: self, parent and root. These attributes are reserved in the con-

crete syntax and therefore may not be used as any of the namei.

2.4.2 List Expressions

A list is constructed with the list construction operator as illustrated below.

{expr0 , expr 1 , . . . , exprn }

A list expression evaluates to a list value, which can later be used as an array

in subscript expressions.

2.4.3 Literals

Literals are atomic expressions that directly evaluate to scalar values (i.e., non-

classad and non-list values). In this sense, literals directly represent the values

that they evaluate to. Examples of literal expressions for values of the various

types are provided below. (With the exception of string literals, all literals are

case-insensitive.)
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• Undefined: undefined

• Error: error

• Boolean: false, true

• String: "foo", "bar\n\t" (C-style escapes are supported.)

• Integer: 10, 0xff (Hex), 0600 (Octal)

• Real: 3.141, 6.023e23, 2K (i.e., 2048.0) The suffixes B, M, G and T repre-

senting scale factors of 20, 210, 220 and 230 are also supported.

• Absolute Time: ’Thu Aug 17 18:21:07 2000 (CDT) -06:00’

• Relative Time: ’18:21:32’, ’3d19:49:15’

2.4.4 Operations

Operations are expressions that combine other expressions by means of unary,

binary and ternary operators. The operators are essentially those of the C lan-

guage, with certain operators excluded (e.g., pointer and dereference operators)

and others added (e.g., non-strict comparison). Thus, a rich set of arithmetic,

logic, bitwise and comparison operators are defined. The set of supported op-

erators and their relative precedences are summarized in Figure 3.

In the following specification of operator semantics, it is to be assumed that

unless otherwise specified, operators are strict with respect to the undefined

and error values in all places, with error taking precedence over undefined.
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Operator class Operators Associativity
Primary [] Left to right
Unary - + ! ~ Right to left
Multiplicative * / % Left to right
Additive + - Left to right
Shift << >> >>> Left to right
Relational < <= > >= Left to right
Equality == != is isnt Left to right
Bitwise AND & Left to right
Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Conditional ?: Right to left

Figure 3: Classad language operators in decreasing order of precedence

Additionally, since most operators are meaningfully defined only over certain

values, we define operations to evaluate to error when values outside the do-

main of an operator are supplied as operands. In other words, unless otherwise

specified, the following implicit rules must be applied (in order) to all following

specifications:

A. (Strictness Rule.) If any operand to an operator is undefined (error),

the resulting value of the operation is also undefined (error). If both

undefined and error are simultaneously supplied to an operator, the

result is error.

B. (Domain Rule.) If the operands to the operator are outside the operator’s

domain, the resulting value of the operation is error.
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We now informally describe the behaviors of operators in the classad lan-

guage.

Arithmetic Operators

All arithmetic operators are binary, and follow both Strictness and Domain

Rules. The domain for arithmetic operators is numeric values, i.e., the integer

and real values. With the inclusion of the following rules, arithmetic in the

classad language occurs in “the natural way.”

1. If the divisor is zero in the case of the division (/) and remainder (%)

operators, the evaluation result is error.

2. If one operand is integer and the other is real, the integer operand is

promoted to a real, and the evaluation proceeds as a computation of real

numbers. Unless the expression violates any of the previous rules, the

type of the evaluation result is real.

Comparison Operators

All comparison operators are binary and, with the exception of the is and isnt

operators, follow both Strictness and Domain Rules. The following rules define

the behavior of strict comparison.

1. Only values of the same type may be compared. The only exception to

this rule is that integers and reals may be compared — the integer is

promoted to a real, and comparison proceeds as with real values.
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2. Only scalar values may be compared. Comparison of aggregate values

(i.e., classads and lists) results in error.

3. (Boolean specialization.) The false value is defined to be less than the

true value.

4. (String specialization.) All string comparisons are case-insensitive, so

"FOO", "fOO" and "fOo" are all equivalent. Strings are ordered lexico-

graphically, ignoring case.

5. (Absolute time specialization.) An absolute time value is defined to be

less than another if the timestamp it represents temporally precedes the

timestamp represented by the other comparand.

6. (Relative time specialization.) Shorter intervals are less than longer inter-

vals.

The non-strict comparison operators is and isnt implement the “is identical

to” and “is not identical to” predicates, and can therefore be used to test if

given values are undefined or error. By definition, these operators follow

neither Strictness nor Domain Rules — these operators always evaluate to true

or false. The following rules, when applied in order, summarize the behavior

of the is operator — the isnt operator is simply the boolean negation of the

is operator.

1. If the types of the two comparands differ, the result of the comparison is

false.
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2. If the type of one comparand is undefined (error), the result of the

operation is true if the other comparand is also undefined (error), and

false otherwise.

3. Comparison of aggregate values is not allowed, so the result of the is

operator is false if either operand is an aggregate value.

4. Comparison of string values is case sensitive. This behavior is different

than that of the strict comparison operators.

5. Otherwise, the is operator behaves exactly like the equals comparison

operator (==).

Bitwise Operators

The bitwise operators follow both Strictness and Domain rules, and are applica-

ble only to integer values. The operators behave identically to their counterparts

in the Java programming language.

Logic Operators

The logic operators OR (||) and AND (&&) are non-strict operators, and there-

fore do not follow the implicit Strictness Rule. Instead the operators follow the

truth tables supplied below, in which T, F, U and E stand for true, false, un-

defined and error respectively. If any operand does not evaluate to a boolean,

undefined or error value, the result of the operation is error.
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AND F T U E
F F F F E
T F T U E
U F U U E
E E E E E

OR F T U E
F F T U E
T T T T E
U U T U E
E E E E E

NOT
F T
T F
U U
E E

Miscellaneous Operators

The Subscript Operator The subscript operator is a binary operator that

follows both Strictness and Domain Rules. It requires one list type operand

(i.e., an array), and one integer type operand (i.e., an index). If the sup-

plied index is not a non-negative integer less than the length of the array,

the operation evaluates to undefined. Otherwise, the result of the oper-

ator is the value of the index’th expression in the array (with zero based

indexing).

The Conditional Operator The conditional operator is the only ternary op-

erator in the classad language. It follows the Strictness and Domain rules

only with respect to its first operand (the condition), which is required

to be boolean. The result of the evaluation is the value of the second

operand (the true consequent) if the condition evaluates to true, and the

value of the third operand (the false consequent) if the condition evaluates

to false.
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2.4.5 Attribute References

Attribute references in the classad language are similar to both variable refer-

ences in programming languages like C and C++, and filenames in the UNIX

filesystem. In the following description of the three variants of attribute refer-

ence expressions, attr denotes a case-insensitive identifier and expr denotes an

arbitrary expression.

attr This attribute reference variant has two possible behaviors. If attr is one

of the following special built-ins, the reference evaluates to certain pre-

defined values.

1. The self attribute reference evaluates to the classad that serves as

the current scope of evaluation.

2. The root attribute reference evaluates to the classad that serves as

the root of the evaluation.

3. The parent attribute reference evaluates to the classad that is the

lexical parent of the current evaluation scope. If the current evalua-

tion scope is the root scope, the parent attribute reference evaluates

to undefined.

If the reference is not one of the above three special built-ins, the reference

evaluates to the value of the expression bound to the attribute named attr

in the closest enclosing scope. (The obtained expression must be evaluated
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in the same scope that it was found.) If no such attribute is found, the

reference evaluates to the undefined value.

.attr This attribute reference variant evaluates to the value of the expression

bound to the name attr in the root scope, when evaluated in the root

scope. If the root scope does not contain an attribute named attr, the

value of the reference is undefined.

expr.attr This variant first evaluates the expression expr, which must evaluate

to a classad. (If this expression evaluates to undefined, the value of the

entire reference is undefined. Otherwise, if the value is not a classad, the

value of the reference is error.) The value of the reference is the value of

the expression bound to the attribute named attr in the closest enclosing

scope beginning with the classad scope identified by expr. As with previous

variants the identified expression must be evaluated in the scope it was

obtained from, and if no such expression exists, the value of the reference

is undefined.

2.4.6 Function Calls

The classad language provides a number of built-in utility functions to perform

tasks such as string pattern matching, obtaining the current time of day, con-

verting values from type to another and testing value types. A comprehensive

list of functions and their behaviors is provided in Appendix A.
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2.4.7 Circular Expression Evaluation

It is trivially possible for expressions in the classad language to refer to each

other in a manner that would lead to an infinite loop during expression evalua-

tion. For example, in the classad [a=b; b=a], it is not possible to determine the

value of either attribute. The classad language defines that circular expression

evaluation result in the undefined value.

2.5 Example ClassAd Policies

2.5.1 Workstation Access Control

Figure 4 shows a classad that describes a workstation and demonstrates the

flexibility of the mechanism in expressing fairly sophisticated policies. The

Constraint attribute indicates that the workstation is never willing to run

applications submitted by users “rival” and “riffraff,” it is always willing to run

the jobs of members of the research group, friends may use the resource only if

the workstation is idle (as determined by keyboard activity and load average),

and others may only use the workstation at night. The Rank expression states

that research jobs have higher priority than friends’ jobs, which in turn have

higher priority than other jobs.
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[
Type = "Machine";
Activity = "Idle";
KeybrdIdle = ’00:23:12’; // h:m:s
Disk = 323.4m; // mbytes
Memory = 64m; // mbytes
State = "Unclaimed";
LoadAvg = 0.042969;
Mips = 104;
Arch = "INTEL";
OpSys = "SOLARIS251";
KFlops = 21893;
Name = "foo.cs.wisc.edu";
ResearchGp = { "raman", "miron", "solomon" };
Friends = { "calvin", "hobbes" };
Untrusted = { "rival", "riffraff" };
Rank = member(other.Owner, ResearchGp) ? 10 :

member(other.Owner, Friends) ? 1 : 0;
Constraint = !member(other.Owner, Untrusted) && Rank>=10 ? true :

Rank>0 ? LoadAvg < 0.3 && KeybrdIdle>’00:15’ :
DayTime()<’8:00’ || DayTime()>’18:00’

]

Figure 4: Workstation Access Control

2.5.2 Time-Dependent Resource Preference

Customers may incorporate environment specific information to improve the

quality of service delivered to their applications. For example, many of the uni-

versity’s workstations that are used for instructional purposes exist in computer

laboratories that are locked during the night. Thus, it is beneficial for applica-

tions to run on these machines after hours, as they will not be preempted by

machine owners during this time.

Figure 5 describes a job that has the policy of running only on INTEL
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machines with sufficient memory and disk space, running the Solaris 2.5.1 op-

erating system. In addition, the Rank expression in the job classad expresses a

preference for running on instructional machines during the night over running

on a machine that has been idle for a long time (and is therefore likely to remain

unused), which is in turn preferred over running on any other machine.

[
Type = "Job";
CompletionDate = undefined;
RemoteSyscalls = true;
Checkpoint = true;
QDate = ’Mon Jan 11 10:53:31 1999 (CST) -06:00’;
Owner = "raman";
Cmd = "run_sim";
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
ImageSize = 31M;
Rank = DayTime()>’20:00’ && DayTime<’8:00’ &&

other.IsInstructional ? 10 :
other.KeybrdIdle>’3:00’ ? 5 : 0;

Constraint = other.Type=="Machine" && Arch=="INTEL" &&
OpSys=="SOLARIS251" && Disk >= 10M &&
other.Memory >= self.ImageSize

]

Figure 5: Time Dependent Resource Preference

2.5.3 Time-Dependent Resource Constraints

We now present an example in which a customer varies the resource constraint

over time. In the example illustrated in Figure 6, the customer waits for up to

two hours for a resource with at least one gigabyte of memory. If a match hasn’t

been found with two hours, the customer downgrades the resource requirement
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to a resource that has at least half a gigabyte of memory. The Rank expression

states that machines with larger memories are preferred. In this example, the

[
Type = "Job";
CompletionDate = undefined;
RemoteSyscalls = true;
Checkpoint = true;
QDate = ’Mon Jan 11 10:53:31 1999 (CST) -06:00’;
Owner = "raman";
Cmd = "run_sim";
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
ImageSize = 31M;
ElapsedTime = CurrentTime( ) - QDate;
Rank = other.Memory;
Constraint = other.Type=="Machine" && Arch=="INTEL" &&

OpSys=="SOLARIS251" &&
other.Memory >= (ElapsedTime>’2:00’?0.5G:1.0G)

]

Figure 6: Time Dependent Resource Constraints

customer will reject machines with less than one gigabyte of memory for the first

two hours, hoping for a better match. This policy is therefore fundamentally

different from one that merely prefers machines with larger physical memories.

2.6 Useful ClassAd Processing Algorithms

The generality of classad expressions is the source of the classad language’s

flexibility and expressive power. However, this generality also incurs costs that

affects the performance of the matchmaking scheme. In this chapter, we describe

classad processing algorithms that assist in the efficient management of classads
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by discovering and simplifying the structure of classad expressions. These al-

gorithms are extremely useful as fundamental operations in defining a more

streamlined and efficient matchmaking process. We describe these algorithms

and their usefulness in the context of the matchmaking scheme.

2.6.1 Specialization

Classad constraints are formulated as a combination of predicates that define

conditions that must be met for a successful match. Common patterns of such

conditions include time-specific predicates and comparisons of the attributes of

candidate match classads with local attributes. For example, a machine may

declare that it is unavailable between 9:00am and 5:00pm, and only applications

with an image size less than the available virtual memory are admitted. Many

variables involved in specifying such policies may be resolved before the clas-

sad is actually tested against candidate matches. For example, the advertising

principal of the machine in the above scenario may decide to not advertise if it

determines that it is unavailable given the current time of day. Since the current

time of day is a constant at the time of advertisement, the specialization mech-

anism may be invoked to substitute this value into, and therefore simplify, the

advertisement’s constraint. In similar spirit, the known available virtual mem-

ory size may be substituted for the virtual memory variable in the example, to

yield a simpler constraint.

We call the above process specialization, since a more general and complex
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expression is specialized to a simpler expression given known values. The pro-

cess of specialization may be viewed either as constant folding, similar to the

process commonly used in optimizing compilers, or as partial evaluation, since a

constraint is simplified when faced with known static inputs and unknown dy-

namic inputs. Algorithmically, these view points are similar due to the absence

of iterative structures and user-defined procedures in the classad language.

Specialization is intuitively similar to ordinary evaluation, except that the

result of specializing an expression whose value is unknown is not the unde-

fined value, but the expression itself. When adequate information is available,

these “expression results” are squashed or propagated by operators analogous to

the undefined value. For example, false && other.x > 10 would specialize

to false, and true && other.x > 10 would specialize to other.x > 10. Fur-

thermore, constants are aggregated appropriately to yield simpler expressions,

so 3 + a + 7 would be specialized to 10 + a.

The utility of specialization is threefold:

1. Specialization provides advertising principals with a mechanism to deter-

mine their current availability accurately and efficiently. In the context of

the policy specified above, if a classad was advertised for the machine be-

tween 9:00am and 5:00pm, the absence of a match from the matchmaker

could signify one of several possible situations.

• There are no customers in the system.

• The machine does not match the constraints of any customer.
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• The machine is unavailable to all current customers, but is available

to some (possibly hypothetical) customer.

• The machine is unavailable to all customers.

While identifying the first two situations is not very important to the

machine’s access control mechanism, differentiating between the last two

situations is often very important. For example, the resource agent used

in Condor uses a specialization mechanism to determine if it is in “owner

state” (i.e., unavailable to all) or not. The agent’s behavior differs con-

siderably between owner and non-owner states.

2. Specialization reduces the number of classads that must be considered

when matchmaking. If an agent can determine that it is unavailable to

everybody given its current state and constraints, it need not publish

an advertisement. The matchmaking algorithm may therefore typically

be run on problem instances of reduced size compared to a framework

without specialization.

3. Specialization makes the matchmaking algorithm more efficient, since spe-

cialized constraints consist only of the minimal expressions that must be

verified vis a vis candidate matches.
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2.6.2 External Reference Determination

Since principals in the system do not know which of their attributes are of

interest to candidate matches a priori, there is an incentive for principals to

describe themselves comprehensively to attract as many candidate matches as

possible. Thus classads may include a very large number of attributes. At

any given time, however, most of these attributes may not be accessed by any

principal. It is therefore useful to identify exactly which attributes of principals

are of interest at any point in time, following which processing techniques that

focus on the efficient management of these attributes may be applied, leading

to a more efficient matchmaking scheme.

The algorithm to determine the set of “interesting attributes” is a modifi-

cation of a bound/free variable analysis algorithm that returns the set of free

variable references given a classad and its constraints, i.e., the external refer-

ences of a classad. Given a set of request classads, the set of offer attributes

that are accessed by the requests is simply the union of the external reference

sets of each request classad. Similarly, the set of request attributes accessed is

the union of the external references of the offer classads.

The external reference algorithm is similar in some ways to the special-

ization algorithm discussed previously. However, the algorithm is simpler in

many ways, since it is only an identification algorithm and does not include

any notion of optimization. Indeed, external references may be determined by

the specialization algorithm since the specialization algorithm must be able to
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identify external references for correct operation. Nevertheless, it is instruc-

tive to decouple these algorithms conceptually since their respective outputs

are used in fundamentally different ways: while specialization facilitates intra-

classad optimization and efficient verification of individual constraints, external

reference determination facilitates inter-classad optimizations and efficient bulk

matching, as detailed below.

1. While it is possible for every classad in the system to be unique, the ex-

ternal reference algorithm provides a basis for defining a notion of classad

similarity. For example, the combination of various architectures, op-

erating systems, virtual memory sizes and load averages may result in

completely distinct machine classads. However, if all jobs only access the

architecture and operating system attributes, all machines with the same

architecture and operating system attributes are essentially identical (with

respect to jobs). A summarization algorithm based on this observation is

described in Section 5.8.

2. Identifying the external reference sets of resources and offers provides a

concrete basis for formulating efficient matchmaking algorithms. For ex-

ample, our framework employs an indexing scheme to efficiently identify

compatible classads (see Chapter 4. Since the cost of indexing every clas-

sad attribute could be prohibitive, the algorithm only indexes attributes

that are in the external reference sets of candidate matches.
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2.7 Related Work

Semi-structured data models such as XML [9] and OEM [4] are finding widespread

use due to their ability to represent and manage distributed and heterogeneous

information. As a result, languages such as Lorel [4], XML-Query [12] and

UnQL [7] are being developed to query these semi-structured databases. The

classad data model distinguishes itself from these data models by including not

only schema and data, but also a query in a single specification.

Features of the classad language distinguish our matchmaking framework

from similar systems. Some multi-agent environments distinguish between the

messaging language, which is used to post and retract advertisements, and the

content language, which is used to describe services and requests that require

matching. Since messaging interactions are abstracted by the matchmaker pro-

tocol in our framework, we neither require nor preclude the use of any specific

messaging language. KQML [15] (Knowledge Query and Manipulation Lan-

guage) is a common and popular messaging language, used in many systems

including ACL and RETSINA, discussed below.

In general, knowledge-base description of agents is common in systems that

facilitate inter-operation between general purpose autonomous agents. ACL [22]

(Agent Communication Language) combines the KQML messaging language

and the KIF [44] content language to enable inter-operation of programs. As

in matchmaking, agents register their interests and capabilities to a facilitator
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(which behaves like a matchmaker). Unlike many other frameworks, the facil-

itator in ACL is capable of sophisticated processing. For example, facilitators

are capable of forwarding requests to other agents that can handle them, decom-

posing requests to be handled by multiple agents and then combining results to

form the answer, forwarding advertisement information to monitoring agents,

and translating information to match agents’ vocabularies. Facilitators use au-

tomated inference to reason about agent specifications and application-specific

facts.

The RETSINA [48] multi-agent infrastructure uses the LARKS [50] lan-

guage to represent services and requests. Advertisements in the language have

input and output variables (whose types must be declared), on which “input”

and “output” constraints may be specified. Constraints are expressed as Horn

clauses (plans are underway to upgrade constraints to full Prolog programs),

and support is provided for inferencing to enable automated reasoning. An on-

tological description of words used in the advertisement may be defined using

the ITL concept definition language [51] and included in the advertisement.

ACL and RETSINA employ powerful languages so that general behavioral

specifications of agents may be expressed in advertisements. Since we are not

interested in a generalized matchmaking meta-architecture, but rather a special-

ized matchmaking framework for resource management, we employ the simpler

classad language, which appears to be sufficiently powerful. In contrast to the

knowledge-base representations used in KIF and LARKS, the classad language
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uses a database representation. Expression evaluation semantics are simple and

lightweight, facilitating efficient and robust implementation.

Globus [17, 11] defines an architecture for resource management of au-

tonomous distributed systems with provisions for policy extensibility and co-

allocation. Customers describe required resources through a resource specifi-

cation language (RSL) that is based on a pre-defined schema of the resources

database. The task of mapping specifications to actual resources is performed

by a resource co-allocator, which is responsible for coordinating the allocation

and management of resources at multiple sites. Using RSL, customers may pro-

vide very sophisticated resource requirements, but servers have no analogous

mechanism.
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Chapter 3

The Gangmatching Model

3.1 Goals

3.1.1 The Benchmark Problem: License Management

Our multilateral matchmaking research is primarily motivated by the follow-

ing real-world license management problem that exposed the inadequacy of a

purely bilateral matchmaking framework. The scenario consists of a number

of jobs, each of which requires a machine and a license to run the application.

Licenses are limited in quantity, and each license is only valid on some subset

of machines. Thus the workstation and license resources required by each job

are inter-dependent.

This license management scenario cannot be accommodated by a bilateral

matchmaking framework. Due to the interplay between limited quantities of

licenses and validity of individual licenses on several (but not all) machines,

statically partitioning machines or jobs into “license categories” is not feasible.

Licenses must therefore be treated as first-class resources with advertisement,

matching and claiming phases. Matches in this scenario however now consist of
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three advertisements: job, machine and license.

A primary goal of our research is the formulation of a general multilateral

matchmaking framework that can accommodate both the above license man-

agement problem and the original bilateral formalism as special cases. The

license management problem serves not only to motivate our research efforts,

but also as a as a “benchmark problem” that we use to measure the efficacy and

efficiency of our proposals. We justify the choice of the benchmark problem as

follows.

1. The license management problem has been encountered in practice, and

is therefore real.

2. The problem is simple enough to only require a few modeling parameters.

Thus a comprehensive study of the problem’s parameter space may be

conducted.

3. The problem is complex enough to shed light on the basic issues of mul-

tilateral matchmaking models and algorithms.

3.1.2 Decentralized Management

A key goal in our framework is facilitating the specification and implementa-

tion of policy at the granularity of single principals. By this we mean that we

want to provide both servers and customers with a framework that enables rep-

resentation of idiosyncratic policies effectively, as judged by the expectations
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of the principals themselves. This goal precludes the imposition of any kind

of “global schema” to describe resources and customers, as the legislation of

such a schema would require a priori knowledge of all resources that may ever

participate in the environment. Such knowledge is impossible to obtain and

fix in dynamic, heterogeneous and continually evolving environments. Such an

approach also divests principals of the means to represent themselves individu-

alistically. We therefore employ an expressive and flexible semi-structured data

model to describe principals.

The use of a semi-structured data model with no centralized control, how-

ever, exposes two difficulties. First, there is a possibility of information missing

from certain descriptions. The solution to this problem is provided by the un-

defined value of the classad language (see Chapter 2). The second difficulty

with this stance is the possibility of semantic incompatibility, which can man-

ifest itself in two ways. First, attributes with the same name across different

descriptions may represent incompatible concepts. For example, it is possible

for a customer to ask for a green fruit and be presented with a curvaceous

translucent computer instead. The dual problem occurs when the same concept

is mapped to different attributes across different descriptions, such as “Cost”

and “Price.” In the absence of a pre-defined schema, a common solution to the

above problem is to employ a concept definition meta-language, which can then

be used to map abstract properties to concrete attributes.

However, we believe that resource management environments evolve much
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like communities, and as with such communities, informal agreements and con-

ventions are quickly established as the system is used because it is in the interest

of both providers and requesters to reach such agreements.

3.1.3 Provider/Requester Symmetry

While all resource management systems allow resource customers (usually jobs)

to qualitatively and/or quantitatively describe required resources, none of the

systems provide resources with the same degree of control and expressiveness

vis a vis customers, reflecting implicit assumptions about resource behavior and

preferences. We argue from experience that such assumptions cannot be made

when resources are distributively owned — we have observed the necessity of

expressive distributed policy definition on (possibly) a per-resource basis.

We therefore believe that it is imperative that the resource management

model invest customers and resources with the same facilities and mechanisms.

It may be necessary for certain implementations of the matchmaking model to

introduce asymmetries in certain environments, such as introducing priorities

that affect customers but not resources. Nevertheless, these asymmetries should

be encapsulated in replaceable modules, and should not pervade the overall

model.
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3.1.4 Single Clearing-House Abstraction

We believe that the system must provide both servers and customers with a

single “clearing-house” abstraction. The absence of such an abstraction greatly

complicates the specification and implementation of policies, as it would not

be possible to easily determine if a principal’s preferences have been honored

correctly (i.e., if the global best match has truly been identified, or the match

is only locally best). A single image abstraction provides an intuitive basis

for defining the guarantees made by the matchmaker with respect to a prin-

cipal’s policies. From the resource management perspective, this abstraction

also allows the flexibility of defining priorities over the entire system, to enforce

pool-wide fairness.

The matchmaking architecture is inherently hybrid, with centralized match-

making and distributed claiming. This architecture incorporates many of the

advantages of both centralized and distributed implementations: centralized

matchmaking simplifies administration and control, and defines a clear and in-

tuitive basis for defining matchmaking algorithm semantics, while distributed

claiming disperses the responsibility of establishment and management of allo-

cations, resulting in a more scalable solution.

It is important to note that we are not necessarily advocating a central-

ized implementation of the matchmaker, although this approach is the sim-

plest method of achieving a single system image. It is certainly conceivable
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for a distributed matchmaking implementation to provide a single system im-

age abstraction, along with the implied benefits of parallelization: increased

scalability, availability and reliability. Our implementation, however, employs

a centralized matchmaker and therefore inherits the advantages of a central-

ized implementation: simplicity and ease of administration. The performance

difficulties associated with this approach are addressed in this body of work.

3.1.5 Support for User and Administrative Policy

Matchmaking systems are distributed policy environments. Whereas conven-

tional resource managers are driven by centralized mechanisms that emphasize

system-wide administrative policy, the matchmaking model is motivated by

distributed, fine grained per-principal user policy. However, user policy cannot

completely supplant administrative policy in a resource management system.

Administrative concerns about controlling preemption, pool usage and fairness

cannot be expressed as user policy issues. We therefore state the necessity of

administrative policy mechanisms as a goal of the matchmaking framework.

Due to the opportunistic, idiosyncratic and dynamic nature of matchmaking

environments, administrative policies must also be expressed with similar mech-

anisms as the advertisements themselves. Administrative policy mechanisms

therefore complement user policy mechanisms to define additional constraints

and preferences with which customers and servers may be matched.
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3.2 Language Representations

3.2.1 Attribute Interpretation and Meaning

The classad language is a partial solution to the substantial language subprob-

lem of matchmaking. However, the classad language by itself is insufficient as

a complete matchmaking solution because it does not include any mechanisms

that define semantics to attribute names, and therefore does not provide a ba-

sis for “attribute interpretation.” It is important to note that the problem of

attribute interpretation occurs at three distinct levels.

1. Some attributes of the advertisement must be interpreted by the match-

maker so that the advertisement may be meaningfully included in the

matchmaking process.

2. Other attributes are interpreted by the administrative policy enforced in

a particular resource management environment.

3. Meanings of most other attributes are of interest to match candidates,

who express user policies via constraints and preferences under basic as-

sumptions and expectations of what the referred attributes mean.

We are careful to distinguish these three cases because we believe that the

solutions to the above problems require different approaches. Since the match-

maker assumes the responsibility of ensuring that the requirements of entities

are satisfied, the matchmaker is only interested in identifying the quantitative
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and operational aspects of the advertisement. This level of interpretation is

different from that performed by the administrative policies specified in match-

making environments, since the latter require certain attributes to be present

in advertisements so that the defined policies may be enforced. While the inter-

pretation performed by the matchmaker is a basic infrastructural necessity of

all matchmaking environments, the interpretation performed by administrative

policy only occurs in particular instances of matchmaking environments. In

contrast to both of the above, motivated by their imperative to find an entity

that satisfies their constraints and preferences, candidate partners are interested

in the descriptive attributes of principals.

To enable unambiguous representation of principals to matchmakers, we de-

fine simple representation conventions as part of the advertising protocol, which

is part of the matchmaking algorithm component of a matchmaking environ-

ment. These conventions merely enable the matchmaker to determine basic

operational aspects of the advertising entity, such as how many candidates are

required by the advertising entity to be satisfied, and where the constraints and

preferences of the entity are expressed. Since these conventions only change

when the entire matchmaking model is revised, this “fixing” of the semantics of

some attributes does not hamper the agility of the framework in dealing with

dynamic and heterogeneous principals — all principals that participate in the

matchmaking environment must adhere to these simple conventions.
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In contrast, we do not define explicit mechanisms to define the semantics

of arbitrary attributes of principals, whether they are required by the admin-

istrative policy or by per-advertisement user policies. To accommodate the

flexibility and expressivity requirements of our framework, any such semantic

definition mechanism must be able to accommodate principals that use arbitrary

attributes to represent themselves individualistically. In addition, semantic def-

inition mechanisms must be able to adapt to the heterogeneity and dynamism

evident in distributively owned matchmaking environments. We believe that

rather than following a centrally legislated attribute semantics framework, com-

munities of service providers and customers will instead naturally converge to

common conventions regarding attribute use and semantics since it is in their

best interest to do so. Furthermore, common guidelines regarding administra-

tive policies of matchmaking environments will be made available to users who

may configure their agents to include the required attributes in advertisements

when participating in that environment.

It is nevertheless important to note that our framework does not preclude

the use of formal semantic definition mechanisms. Concept definition and man-

agement languages usually involve the definition of abstract concepts that are

then translated into a set of ground terms whose meanings are fixed and known.

Thus, the attributes included in advertisements may be thought to be ground

terms whose semantics are fixed by some mechanism external to the matchmak-

ing framework.
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3.2.2 Ports and Docking

Multilateral matchmaking is an important goal of our model. Single advertise-

ments must therefore be able to represent the requirement of multiple inter-

dependent matches. There are therefore two fundamental concepts that must

be represented in the advertisement.

• Advertisements must incorporate the notion of multiple “interfaces” to

enable simultaneous matching with several heterogeneous entities.

• Advertisements must also be able to represent dynamic dependencies be-

tween interfaces. By this we mean that it must be possible to qualitatively

alter some properties of interfaces based on match results of other inter-

faces.

In order to realize the above goals, we have adopted a docking paradigm

to matchmaking. Each advertisement defines an ordered list of labeled ports,

each of which denotes a request for a “submatch.” A multilateral match oc-

curs by docking the individual ports of distinct advertisements, thus forming

tree-shaped “gangs” of linked classads, as illustrated in Figure 7. Ports may be

thought of as docking interfaces defined by the hosting advertisement. As such,

in addition to the label associated with the port, each port provides a names-

pace that may be used to define attributes to express characteristics of the

advertising entity to candidates expected to dock at that port. Each port also

includes constraint and preference expressions (named Constraint and Rank
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Figure 7: The Gangmatching Operation

respectively) which are used to select the candidate to dock at that port. Since

gangmatching cannot proceed without these essential items of information, the

port list, port label, port constraints and preferences are part of the advertising

protocol of the gangmatching model. The detailed semantics of port constraints

and preferences will be shortly discussed.

One may note that the classads shown in previous figures represent policies

in a bilateral matchmaking framework. Bilateral matchmaking is a special case

of gangmatching, where every advertisement possesses exactly one port. To

simplify the notation of this special case, advertisements without an explicit

port list are assumed to have a single implicit port labeled “other.”
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The rules and semantics of port labels are the key to providing much of the

advanced functionality of the gangmatching model. Port labels are required

to be locally unique; i.e., the port labels of any given advertisement must be

distinct, so that in the context of any advertisement, a label is unambiguously

associated with at most one port. The port label serves as the name that

identifies the corresponding port of the candidate docked at that port. Thus

port labels are the fundamental mechanism by which constraints and preferences

are expressed on candidates.

An important aspect of port labels is that their scope of validity is not con-

fined to the port of declaration. Instead, the scope of a port label extends from

the port of declaration to the end of the port list, so expressions in later ports

may refer to labels of ports earlier in the list, but not vice versa. This definition

of label scopes allows information to be conveyed from one match locality to

another. Specifically, constraints and preferences on candidates docked at ports

later in the port list may be defined using information from candidates docked

to ports earlier in the port list. These ideas are discussed further below.

3.2.3 User Policy Specification

Constraints and preferences are the primary mechanism via which agents specify

their user policies. The port constraint defines properties that must be satisfied

by candidates that dock at that port, thus allowing principals to define idiosyn-

cratic notions of compatibility on a per-port and per-advertisement basis. The
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extended scopes of labels allow inter-port dependencies to be expressed since

constraints of some ports may refer to attributes of entities docked in previous

ports.

The ports of two advertisements may successfully dock if the constraint

expressions defined in the ports both evaluate to true. If either constraint

evaluates to false or non-boolean values such as undefined or error, the ports

are deemed to be incompatible and may not be docked.

Each port may also include a preference expression which is used to select

among several compatible advertisements. The rank expression is regarded as

a user defined “goodness metric,” where greater values denote more desirable

candidates. The “greater than” comparison operator of the classad language

is used to compare rank values, so rank expressions may evaluate to any value

types that are comparable in the language.

Care must be taken in defining the semantics of port rank expressions. Al-

though gangmatching is naturally combinatoric in nature, we must not define

model semantics that would force gangmatching algorithms to consider all pos-

sible combinations. The latter situation would be necessary if the semantics of

rank expressions were defined to produce the best combination of submatches

by maximizing a function that incorporates the rank expressions of all ports.

Since functions are not necessarily maximized by maximizing their components

independently, it would be necessary to examine a large number of advertise-

ment combinations to identify the most preferred bundle. We therefore define
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preference semantics so that the rank expressions of ports are considered inde-

pendently in a left to right order, with the best candidate being selected on a

per-port basis.

These ideas are illustrated in Figure 8, which shows a single advertisement

that requires two machines in a single match operation, which are both required

to be on the same subnet. The port labels “Host1” and “Host2” are used to

define the constraints on the two ports. Note that the constraint expression in

the latter port refers to both port labels in defining the subnet co-location con-

straint. The Ports attribute (a list of two classads) and the Label, Constraint

and Rank expressions in each port are required by the advertising protocol of

the matchmaker.

3.2.4 Administrative Policy Specification

User policies expressed as constraint and rank expressions in advertisements

define local criteria to determine match validity and desirability. Administra-

tive policies complement user policies by reconciling the competing forces of

customer priorities, request preferences and offer preferences. Administrative

policies also control the state of the system by disallowing matches that may,

for example, overload the system.

Administrative policy is specified through three mechanisms.

1. Root identification. There is no intrinsic information in a classad to

differentiate a request from an offer. In the abstract, it is possible to
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[
Owner = "raman";
Address = "<froth.cs.wisc.edu:2020>";
Priority = 23.7;
Ports =
{

[
Label = Host1;
Executable = "a.out";
ImageSize = 25.7M;
MemoryReqs = 17.2M;
Constraint = Host1.Arch == "INTEL" && Host1.OpSys == "LINUX" &&

Host1.VirtualMemory > ImageSize;
Rank = Host1.MIPS

],
[

Label = Host2;
Executable = "b.out";
ImageSize = 22.7M;
MemoryReqs = 11.2M;
Constraint = Host2.Arch == "INTEL" && Host2.OpSys == "LINUX" &&

Host2.VirtualMemory > ImageSize &&
Host1.Subnet == Host2.Subnet

Rank = Host2.KFlops
]

}
]

Figure 8: Using port labels to define dependent matches

perform the matchmaking process either by choosing offers and finding

compatible requests, or by choosing requests and finding compatible offers.

Choosing one set of advertisements to “seed” the matchmaking process

emphasizes the satisfaction of these advertisements in comparison to the

remaining set. We call this process root identification, since it identifies

the advertisements that will serve as the roots of classad gangs.

In Condor, root advertisements are usually resource requests issued by
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submitted jobs, reflecting the resource management system’s task of com-

pleting submitted jobs. We henceforth assume that our roots are exactly

the requests submitted to the system.

2. Root Ordering. While the root identification process identifies a set of

advertisements to seed the matchmaking process, the root ordering pro-

cess sequences the roots so that they are matched in decreasing order of

preference. Root ordering may be used to implement common resource

management formalisms like priority. The root ordering scheme is speci-

fied by an expression that is evaluated in the context of every root to yield

a corresponding value. The roots are then ordered by the values obtained

from evaluating the sort expression.

3. Docking Vector. The final administrative policy mechanism is the dock-

ing vector, which provides a basis for selecting a single submatch for a port

when the port is compatible with several candidates. The docking vector

is a vector of expressions that are evaluated in the context of the port

being matched to yield a vector of values. Value vectors are obtained

for all candidates compatible with the port in question, and vectors with

undefined or error components are discarded. The candidate chosen for

the port in question is the one that has the “largest” value vector when

the vectors are ordered lexicographically.

We now provide an example of how these administrative policy mechanisms may
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be used to implement the matchmaking policy of the Condor system. Job ad-

vertisements requesting workstation resources serve as the root advertisements

in Condor. The root ordering criterion is the priority of the job’s submitter.

Thus, the root identification and root ordering mechanisms essentially produce

a list of job advertisements sorted by priority, which are then considered in order

by the matchmaking algorithm.

Given a list of mutually compatible candidates for a given root, Condor’s

candidate selection policy is as follows. First, if the job’s preferences indicates

a uniquely preferred candidate, then that candidate is chosen as the match. If

there are several equally ranked candidates, Condor attempts to match the job

with a candidate that is currently unused by any other customer. If no such

resources are available, the system must preempt some workstation.

An attempt is first made to identify a machine that strictly prefers the new

job to the customer currently being served; i.e., preemption for machine rank. If

rank preemption is not possible, preemption for priority is considered. Priority

preemption is possible if the new customer’s priority is better than the customer

currently being served and the machine prefers or is at least indifferent between

the two customers. In addition to these criteria, rank and priority preemption

can only occur if an administrator specified preemption constraint holds. If the

preemption constraint does not hold an alternate resource must be considered.

By default, this constraint is satisfied only if the customer being served has

been serviced for at least three hours, thus preventing “preemption thrashing.”
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{
self.Rank // job’s rank

,
label.RemoteUser is undefined ? 2 : // no preemption
label.CurrentRank < label.Rank ? 1 : // rank preemption
label.RemoteUserPrio > UserPrio*1.1 && // priority preemption

label.CurrentRank <= label.Rank && // (machine must like job)
label.ServiceTime > ’3:00’ ? 0 : // (preemption constraint)
error // otherwise fail

,
label.RemoteUser is undefined ? 0 : // preemption?
label.RemoteUserPrio*10000-label.ImageSize // (preemption rank)

}

Figure 9: Condor’s policy expressed as a docking vector

If, at this point, there are several equally feasible workstations, a candidate is

chosen on the basis of a rank expression specified by the administrator. The

current default is only defined during preemption, when the machine serving

the customer with the worst priority and smallest image size is chosen.

Condor’s administrative policy is expressed as a docking vector in Figure 9.

Note that the attribute label is used as a generic label to access the namespace

of the docked candidate. This technique works because the expression label

itself evaluates to the label specified for the port.

The docking vector formulation of Condor’s policy is far easier to understand.

Furthermore the mechanism allows the administrative policy to be modified or

extended. For example, one may append the expression -label.Memory to the

docking vector, which would have the effect of giving out the machine with the

least amount of memory to the job, thereby conserving machines with larger
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memories to jobs that actively require or prefer them. This functionality is a

significant extension to Condor’s current capabilities.

3.2.5 Summary of Representation and Discussion

We now summarize the main aspects of the proposed gangmatching advertise-

ment representation and proceed to discuss the representation’s implications

and functionality.

Summary of Representation

Advertisements in the gangmatching model are composed of distinctly labeled

ports, each of which includes a constraint and a rank expression. Ports may be

regarded as interfaces through which advertisements are matched by means of a

docking operation. Port labels are used to refer to the attributes of candidates

that dock at the labelled port, and since the scope of port labels extends from

the port of declaration to the end of the port list, expressions in later ports

may refer to attributes of candidates docked at previous ports. The list of

ports, each of which contains a label, constraint and preference, is required

by the matchmaker for the advertisement to be meaningfully included in the

matchmaking process. Thus, these structures of the advertisement are fixed by

the matchmaker’s advertisement protocol.

The root identification and root ordering administrative policy components

are invoked to identify and sequence a subset of advertisements that will serve as
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the seeds of classad gangs. Root ordering enforces a priority scheme to ensure

that gangs for some roots are marshaled before others. When marshaling a

gang, the matchmaker ensures that the constraints specified in the respective

ports of candidates are satisfied. The docking vector is then used to produce

value vectors for all compatible candidates. The best candidate is identified by

lexicographically ordering value vectors that do not have undefined or error

components, and choosing the candidate with the “largest” vector.

Functionality Implications of Representation

The proposed representation of advertisements has several interesting function-

ality implications. The use of the classad language to formulate constraints

and preferences provides an extremely flexible and general basis for matchmak-

ing. However, due to the fixed number of ports in advertisements, the proposed

gangmatching model can only marshal gangs that have fixed “branch out” fac-

tors at each gang node. While it is certainly possible to envision scenarios in

which this feature is a limitation, we have not encountered real-world situations

that require this functionality. Another implication of the model is the implicit

conjunction of port requests — the candidate is satisfied if and only if all the

ports of the advertisement are successfully docked, resulting in an implicit AND

model of resource allocation. Thus, there is no mechanism to specify OR models

or arbitrary AND-OR resource allocation models.

The “declare before use” semantics of scope labels introduces a left-to-right
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bias to the model, and results in many interesting consequences. First, although

the model does not explicitly require a gangmatching algorithm that fills ports

in left to right order, the use of such an algorithm is naturally suggested. Sec-

ond, the label scope semantics ensures that there are no circular dependencies

between ports. A consequence of this feature is that inconsistent gangs may be

detected before the entire gang of classads is marshaled, greatly increasing the

efficiency and feasibility of gangmatching algorithms.

The symmetry of the gangmatching model implies that both requests and

offers can marshal gangs of advertisements. Given a designated root adver-

tisement, the topology of the gang is a rooted tree. Thus the model not only

supports aggregation for roots but for non-root advertisements as well, provid-

ing a hierarchical aggregation functionality.

The multi-ported advertisements in the gangmatching model are in some

ways similar to Horn clauses in Datalog-like languages. However, while Horn

clauses have a uniquely designated term that serves as the head of the clause,

advertisements in the gangmatching model do not have a specific port that is

designated to serve as a “parent link” in a gang. Since root advertisements do

not have a parent in the gang tree, they do not have parent links. Thus, the

omission of a designated parent link preserves the symmetry between root and

non-root advertisements.

Since the parent link of a non-root advertisement may exist anywhere in its

port list, the gangmatching model facilitates the representation of interesting
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abstract services. Figure 10 shows an advertisement for a graphics rendering

service. The advertisement consists of three ports, of which the first behaves as

the parent link. The next two ports request a workstation and a license for the

rendering application respectively. The advertisement therefore behaves as an

intermediary that converts requests for an abstract rendering service to concrete

requests for resources that are required to perform the render.

[
Ports =
{

[
Label = request;
Type = "render_server";
Constraint = request.Type=="render_client" &&

request.Owner!="rival";
Rank = 0

],
[

Label = cpu;
ImageSize = 27.2M;
MemoryReqs = 15M;
Executable = "do_render";
StdIn = request.sceneFile;
StdOut = request.outputFile;
Constraint = cpu.Arch=="INTEL" && cpu.OpSys=="LINUX" &&

cpu.VirtualMemory>ImageSize;
Rank = cpu.Memory

],
[

Label = license;
HostName = cpu.Name;
Constraint = license.App=="do_render"
Rank = 0

]
}

]

Figure 10: Advertisement for a rendering service
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Figure 11 illustrates an intriguing functionality of the gangmatching model.

The advertisement marshals two co-located compute nodes and then re-advertises

a multi-processor computing service that is the aggregate of the two marshaled

nodes.

3.3 The Matchmaking Framework Architecture

The matchmaking framework is composed of three kinds of principals: agents

that provide services, agents that request services and entities that constitute

the matchmaking service itself.

3.3.1 Provider and Requester Architecture

The most numerous kind of principals in matchmaking environments are service

providers and requesters. In discussing these agents, it is important to note

that the provider and requester characterizations are made only with respect to

particular interactions — it is possible for a single agent to be a provider with

respect to one service and a requester with respect to another. However, for

clarity of discussion we assume agents to be dedicated providers or requesters.

In addition to the actual actions involved in producing or consuming a ser-

vice, the matchmaking related activities of these agents are advertising, receiv-

ing notifications and claiming. The architecture of providers and requesters is

simple: in addition to the modules required to provide, request and activate
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[
Ports =
{

[
Label = cpu1;
Type = "cpu_request";
Constraint = cpu1.Type == "ComputeNode" &&

cpu1.IsDedicated;
Rank = 0

],
[

Label = cpu2;
Type = "cpu_request";
Constraint = cpu2.Type == "ComputeNode" &&

cpu2.IsDedicated &&
cpu1.Host == cpu2.Host

Rank = 0
],
[

Label = request;
Type = "multi_processor";
HostName = cpu1.Name;
Arch = cpu1.Arch;
OpSys = cpu1.OpSys;
NumCpus = cpu1.NumCpus + cpu2.NumCpus;
Memory = cpu1.Memory + cpu2.Memory;
Disk = cpu1.Disk + cpu2.Disk;
VirtualMemory = cpu1.VirtualMemory + cpu2.VirtualMemory;
Constraint = request.MemoryReqs < Memory - 15M;
Rank = 0

]
}

]

Figure 11: Advertising two co-located compute nodes as an multi-processor
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the specific services of concern, each agent includes an advertisement creation

module, a notification reception module and a claim maintenance module. The

functionalities of these modules will be discussed in detail shortly.

3.3.2 Matchmaker Architecture

Although we have previously referred to the matchmaker as a single entity, the

matchmaker may be conceptually decomposed into a number of components

These components are fairly independent, and may therefore be implemented

as separate threads or processes.

Offer Collector The Offer Collector component is responsible for collecting

advertisements issued by agents that provide services. The Offer Collector

implements the advertising protocol of the matchmaker.

Request Collector The dual component of the Offer Collector, the Request

Collector collects advertisements issued by agents that request services.

The Request Collector is also cognizant of the matchmaker’s advertising

protocol, and ensures that the advertisements sent to it are valid.

Matchmaking Engine The Matchmaking Engine encapsulates the match-

making algorithm and is responsible for creating matches. The Matchmak-

ing Engine is periodically activated to perform a “matchmaking cycle,”

which consists of obtaining the offer and request advertisements from the

respective collectors and then proceeding to create gangs in accordance to
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the user and administrative policies specified. As matches are created, the

Matchmaking Engine sends the matched gangs to the Notification Engine

for further processing.

Notification Engine The Notification Engine is responsible for posting match

notifications to all entities involved in the match. The responsibility for

notifying matched entities is off-loaded from the main Matchmaking En-

gine because posting notifications can be a relatively slow process due to

the required number of network connections and associated round-trips.

In addition to notifying all the gang members in a match, the Notifica-

tion Engine also posts a notification to a Match Registrar containing the

contents of the entire gang.

Match Registrar The Match Registrar maintains a record of all the matches

in a matchmaking environment. The information from the registrar may

be used maintain accounts about current and historical resource usage

for users. The registrar may also be consulted to quickly and accurately

gauge the state of the system.

The above components and their interactions are illustrated in Figure 12.
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Figure 12: Architecture of the Matchmaker

3.4 Advertising

3.4.1 Advertisement Creation Mechanism

The information required to create complete advertisements is distributed in

various locations. Advertisement creation is therefore a process of collating

information with which advertisements are augmented or rewritten. We envision

advertisement creation to be performed by a “pipeline” of advertisement writer

objects, each of which each obtains information from some source and augments

or rewrites advertisements passing through it. It is important to note that not

all stages of the pipeline exist within the provider or requester agent. Some

attributes of the agent, such as priority information, are inserted by accounting

processes that reside within the Match Registrar.

For example, consider the workstation advertisement example in Figure 13
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[

Name = "cobra.cs.wisc.edu";

Machine = "cobra.cs.wisc.edu";

IsInstructional = FALSE;

RebootedDaily = FALSE;

OffHoursOnly = FALSE;

CkptServer = "condor-ckpt.cs.wisc.edu";

IsDedicated = FALSE;

IsComputeCluster = FALSE;

VirtualMachineID = 1;

VirtualMemory = 746304;

Disk = 384802;

CondorLoadAvg = 0.997985;

LoadAvg = 1.000000;

KeyboardIdle = 70526;

ConsoleIdle = 70530;

Memory = 251;

Cpus = 1;

Arch = "INTEL";

OpSys = "LINUX";

UidDomain = "cs.wisc.edu";

FileSystemDomain = "cs.wisc.edu";

Subnet = "128.105.166";

TotalVirtualMemory = 746304;

TotalDisk = 384802;

KFlops = 63685;

Mips = 550;

LastBenchmark = 971987587;

TotalLoadAvg = 1.000000;

TotalCondorLoadAvg = 0.997985;

TotalVirtualMachines = 1;

State = "Unclaimed";

EnteredCurrentState = 972068166;

Activity = "Idle";

EnteredCurrentActivity = 972206722;

Rank = 0.000000;

CurrentRank = 0.000000;

Constraint = (((LoadAvg - CondorLoadAvg) <= 0.300000) &&

KeyboardIdle > 15 * 60) &&

(other.ImageSize <= ((Memory - 15) * 1024));

LastHeardFrom = 972223116;

]

Figure 13: Condor Workstation advertisement
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which describes a real advertisement of a workstation in the University of

Wisconsin-Madison pool. The advertisement consists of several descriptive at-

tributes such as load average, keyboard idle time and available virtual memory

which are obtained by probing the physical state of the workstation. Most of

the attributes used to describe the machine including the main constraint and

rank expressions which express the owner’s policy, are obtained from configu-

ration files. Other aspects of the advertisement, such as the IsInstructional

attribute which describes whether the machine is an instructional machine that

is physically located in a common laboratory, are similarly obtained from static

and dynamic configuration mechanisms. Finally, the advertisement is aug-

mented with accounting information from Condor’s equivalent of the Match

Registrar, including information such as the priority of the customer currently

using the machine (if any). The corresponding pipeline of advertisement writer

objects is illustrated in Figure 14.

Empty

StaticWorkstation
State Configuration

Accounting
Information

Dynamic
Configuration

Advertisment
Complete

Advertisement

Figure 14: Machine advertisement creation pipeline

The process of request creation in Condor is equally involved. Much of the

information required to create a request advertisement, such as executable name,

arguments, environment variables, constraints and preferences, may be specified

in description files. When information is not provided in the description file,
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reasonable defaults are created from information obtained directly from the

executable itself, or the submission environment. For example, if the image

size of the executable is not specified, the size of the executable is used to

estimate an image size. Similarly, if constraints and preferences are not specified,

defaults are created to obtain a workstation that approximates the submission

environment. The corresponding pipeline of advertisement writer objects for

Condor requests is illustrated in Figure 15.

Empty

Description
Files

Configuration

Advertisment

Submitted
Executable

Submission
FilesEnvironment

Accounting
Information

Advertisement
Complete

Figure 15: Job advertisement creation pipeline

3.4.2 Advertisement Identity and Lifetime

Advertising, like many other activities in matchmaking environments, is periodic

in nature. Thus entities repeatedly send advertisements with updated attributes

to the matchmaker so that matches may be created with current information.

Periodic advertising provides many of the important functionality advantages of

matchmaking environments: fault tolerance and natural support for both pool

evolution and dynamic agent attributes. These functionalities are facilitated by

“timing out” stale advertisements, introducing new advertisements and updat-

ing old advertisements respectively, all of which involve advertisement identity

and lifetime issues.
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Every advertisement posted by an agent is created with a globally unique

identifier, which may be created by, for example, concatenating the network

address of the agent with the timestamp of the advertisement’s creation. The

advertisement identifier is used as a handle when attributes in the advertisement

need to be updated, thus preserving the identity of the updated advertisement.

Every advertisement has a specific lifetime associated with it. These lifetimes

may only be extended by updating the advertisement. If no updates are re-

ceived from an agent for any interval beyond the advertisement’s lifetime, the

agent is assumed to have crashed or withdrawn from the resource management

environment, resulting in the destruction of the agent’s advertisement.

Advertisements are also consumed by the matchmaking process. Agents that

have been matched cannot continue to update their already matched advertise-

ments — these updates will be discarded by the appropriate collector. Instead,

matched agents must create advertisements with fresh identities whenever they

receive match notifications from the matchmaker.

3.5 Match Creation

The main complication of match creation is the efficient identification of matches

in the gangmatching model. The inherently combinatoric aspects of the model

require interesting indexing techniques and search strategies to enable a feasibly

efficient implementation. A detailed study of this topic is provided in Chapter 5.
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After a gang has been identified by the matchmaking algorithm, the adver-

tisements that comprise the gang are removed from the respective advertisement

pools, thus ensuring that matched advertisements are not reused in subsequent

gangs. The remaining steps in match creation are trivial given that a mutu-

ally compatible gang has been marshaled. Unique identifiers are created and

issued to all the various submatches which comprise the gang, and to the gang

as a whole. These identifiers may be subsequently used as handles to obtain

information about the match. The gang is then passed on to the Notification

Engine.

3.6 Notification

Notification is conceptually the simplest of the matchmaking activities since it

only involves sending copies of the matched gang to every agent whose adver-

tisement is involved in the gang. Notification of the gangmatch is also sent to

the Match Registrar (to track the status of the pool) and to the appropriate

Collectors (to discard the matched advertisements).

Gang notification is by nature a latency-intensive operation because it re-

quires several socket connection operations which are each followed by the trans-

mission of relatively small messages. Fortunately, gang notification is a “pleas-

antly parallel” operation and can therefore be decomposed into independent

tasks that may be performed concurrently by several worker tasks. By creating

a suitably large number of worker tasks, the throughput of gang notification may
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be balanced with the match creation throughput of the matchmaking algorithm.

3.7 Claiming

The presence of claiming as an additional step in resource allocation distin-

guishes matchmaking from conventional resource management. The semantics

of a match is defined to provide matched entities with an opportunity window

to complete the claiming process. When notified of a match by the matchmaker,

notified agents enter into a “matched state” for a fixed duration during which

time the claiming protocol is activated. If the claiming protocol is not completed

within the opportunity window, the agents abort the process and re-advertise

their availability.

An important feature of the claiming interaction is the possibility of veto.

Due to the autonomy invested in providers and customers, agents may choose

to not proceed with the claim and reject the match completely. Thus the locus

of control resides with the agents participating in the matchmaking framework

and not the matchmaker. Since any one of the several agents involved in a

gangmatch may reject the match, the claiming protocol for an entire gang of

agents must be sufficiently robust to ensure that all agents in the gang are left

unclaimed if the gangmatch is rejected.

To avoid the duplication of functionality and complexity across different

claiming protocols, we define a composite claiming interaction composed of a
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generic claiming protocol and a specialized claiming protocol. The generic claim-

ing protocol encapsulates the complexity of both marshaling and maintaining

a gang of distributed agents, and is common to all agents. The specialized

claiming protocol performs the specific actions required to claim the service of

interest, and therefore differs across agents representing different services.

Given the implicit AND request model of advertisements, one might be

tempted to assume that the entire gangmatch must always be rejected if any

agent in the gang vetoes the match or leaves the match after the gang is claimed.

However, we believe that this logic should not be legislated by the gangmatching

model. Advertisements, such as those illustrated in Figure 10 and 11, may

employ the parent link and hierarchical marshaling features of the gangmatching

model to provide services by aggregating other services. In this paradigm it

may be possible for an entity to provide the service offered even if one of the

aggregated services is not available. For example, an advertisement may have

marshaled two workstations to provide a particular service, with one workstation

being unessential after an initialization phase. The agent can therefore continue

to provide the promised service with a reduced subgang. Thus, while most

agents may not exercise the option to continue service with a reduced subgang,

agents must be allowed to make this decision rather than legislating one via the

model.

Due to the presence of a gang root, the generic claiming protocol may be
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formulated as a recursive two-phase protocol consisting of VERIFY and COM-

MIT phases, much like the two-phase transaction commit protocol [24]. After

being notified, the root of the gang begins the VERIFY phase by asking each

of its subordinates to verify if they want to join the gang. If these subordinates

do not have subordinates of their own, they immediately reply with OK or

ABORT messages indicating their position on joining the gang. If the root re-

ceives OK messages from all subordinates, the COMMIT phase of the protocol

is activated, when the root agent sends COMMIT messages to all subordinates,

completing the claiming process successfully. If any of the subordinates sends

an ABORT message in the VERIFY phase and the root consequently decides to

abort the claim, ABORT messages are sent to all subordinates, thus terminating

the claiming protocol. Of course, if the root’s subordinates have subordinates

of their own, the VERIFY and COMMIT phases of the protocol are performed

recursively, with the verdict of each phase being returned to the root as the

agent’s decision. The specialized claiming protocol may be activated after the

gang has been claimed by the generic protocol. By definition, other details of

the specialized protocol are not specified by the model.

Although the two-phase claiming protocol is similar to its database coun-

terpart, the match claiming protocol is far simpler due to the relatively lax

semantics of matches and claims. Since matches are only valid for a fixed time

interval prior to claiming and since gang members may legitimately withdraw
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from the gang at any time, the complex failure modes associated with the two-

phased transaction commit protocol are absent.

After the gang has been claimed, the generic claiming protocol also main-

tains the match by periodically sending “heart beat” messages to all immediate

neighbors in the gang tree. If expected heart beat messages are not received by

an agent for a suitable time interval, the agent assumes that the corresponding

gang member has crashed or retired from the gang. Depending on the seman-

tics of the situation, the agent then itself retires from the gang, or continues to

provide the advertised service as necessary. Heart beat messages are also sent

by every gang member to the Match Registrar, so that the registrar’s view of

active matches is maintained accurately.

3.8 The Condor Matchmaking Scheme

Condor [35, 36] is an high throughput computing (HTC) environment that can

manage very large heterogeneous collections of distributively owned resources.

The architecture of the system is structured to provide sophisticated resource

management services at the resource, customer and application levels to both

sequential and parallel applications [42]. This section briefly describes aspects

of the Condor system that are relevant to the problem of matchmaking.

Resources in the Condor system (computers capable of running Condor jobs)

are represented by Worker Agents (WA),1 which are responsible for enforcing

1The current Condor system uses slightly different terminology, for historical reasons.
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the policies stipulated by resource owners. An WA periodically probes the re-

source to determine its current state, and encapsulates this information in a

classad along with the owner’s usage policy. Customers of Condor are rep-

resented by Customer Agents (CAs), which maintain per-customer queues of

submitted jobs (represented as classads). Matching is coordinated by a cen-

tral manager, which consists of three entities, a collector, an accountant, and

a negotiator. In relation to the described architecture, the collector process is

equivalent to the Offer Collector, the accountant is equivalent to the Match Reg-

istrar, and the negotiator acts as the Request Collector, Matchmaking Engine

and Notification Engine.

Each CA periodically sends the collector submitter classads describing users

who have submitted jobs. The WAs also send the collector worker ads describing

their state. The collector only stores the most recent ad for each worker and

each submitter. These ads conform to an advertising protocol that states that

every classad should include expressions named Constraint2 and Rank, which

denote the requirements and preferences of the advertising entity. The protocol

also requires the advertising parties to include “contact addresses” with their

ads, and allows an WA to include an “authorization ticket” in each worker ad.

Periodically, the negotiator enters a negotiation cycle. It retrieves from the

collector the current ad for each worker and submitter. It asks the accountant to

What we call a worker agent here is called a start daemon (startd) in Condor, and what we
call a customer agent is called a scheduler daemon (schedd).

2Constraint expressions are currently named Requirements expressions by the Condor
system
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prioritize submitters based on their past usage. In then cycles through the sub-

mitters in priority order and contacts CAs, requesting from them job classads.

The negotiator matches each job ad with a compatible worker ad. Since the

notion of “compatible” is completely determined by Constraint expressions,

classads may be matched in a general manner. In addition, Rank expressions

are used as goodness metrics to identify the more desirable among the compat-

ible matches. The algorithm used by Condor’s for preemption and for resolving

job and machine preferences was described in Section 3.2.4.

When the negotiator determines that two classads match, it removes the

worker ad from its set of available workers and invokes the matchmaking proto-

col to contact the matched principals at the contact addresses specified in their

classads and send them each other’s classads. The manager also gives the CA

the authorization ticket supplied by the WA.

The CA then follows the claiming protocol by contacting the WA and sending

the authorization ticket. The WA accepts the resource request only if the ticket

matches the one that it gave the collector, and the request matches the WA’s

constraints with respect to the updated state of the request and resource, which

may have changed since the last advertisement. If the request is accepted, the

workstation runs the customer’s job and informs the accountant of the resources

used. When the CA finishes using the resource, it relinquishes the claim, and the

WA advertises itself as unclaimed by sending a new ad to the collector. The WA

may also send an ad when it starts running the job, indicating that although
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the workstation is currently busy, it is still interested in hearing from higher

priority customers. The specification of what constitutes “higher priority” is

completely under the control of the WA.

The central manager is highly fault tolerant. A very simple Condor master

process ensures that a collector process and a negotiator process are always

running. If the collector should die, a new one started by the master will quickly

learn of the states of all the CAs and WAs from their periodic update messages.

The negotiator regenerates its lists of ads from the collector at the start of each

negotiation cycle. Only the accountant maintains persistent state.3 Established

associations between CAs and WAs are not affected by a malfunction of the

central manager.

3.9 Related Work

Although details of current distributed resource management systems vary dra-

matically, there are aspects that they share. Instead of providing a survey of a

large number of systems, we briefly discuss the basic matching mechanisms of

some resource management environments to highlight the differences between

conventional resource allocation and matchmaking.

Systems such as NQE [43], PBS [27], LSF [54] and Load-Leveler [10] process

jobs by finding resources that have been identified either explicitly through a job

3The accountant is currently a library of functions invoked by the negotiator and collector,
which store usage information in a file on disk.
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control language, or implicitly by submitting the job to a particular queue that

is associated with a set of resources. Customers of the system have to identify

a specific queue to submit to a priori, which then fixes the set of resources that

may be used, and hinders dynamic qualitative resource discovery. Furthermore,

system administrators have to anticipate the services that will be requested by

customers and set up queues to provide these services. Over time, the system

may accumulate a large number of queues whose service semantics differ to

various extents, complicating the process of finding the appropriate queue for a

job.

Legion [25] takes an object-oriented approach to resource management, for-

mulating the matching problem as an object placement problem [31]. The iden-

tification of a candidate resource is performed by an object mapper, whose

recommendation is then implemented by a different object. The Legion system

defines a notation [31] that is similar to classads, although it uses an object-

oriented type system with inheritance to define resources [34], as contrasted

with the simple attribute-oriented Boolean logic of classads. Legion supports

autonomy with a jurisdiction magistrate (JM), which may reject requests if the

offered requests do not match the policy of the site being managed by the JM.

While the JM gives a resource veto power, there is no way for a resource to

describe those requests that it would rather serve.

Distributed computing environments such as Seti@Home [2] and Distributed.net [1]

exemplify the power of federated computing. However, these systems do not
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provide general and flexible mechanisms to specify resource usage and access

policy, running tasks in “screen saver” priority instead. However, this policy

may neither be necessary nor sufficient to many resource owners. Furthermore,

the infrastructure to match customers to resources is also rudimentary when

compared to the matchmaking system.

The JINI system [53] being developed by Sun Microsystems has similar

notions as the classad based Condor system: resources advertise their presence,

customers discover their presence through a lookup service and claim them for

computation. The JINI architecture is closely coupled to the Java platform, and

the lookup service used by customers essentially locates object instances that

implement the interface specified by the customer. Constraint based queries

may also be specified by the customer, but the query language is significantly

less rich than the classad language. Furthermore, JINI does not provide a

symmetric interface to providers and customers.

UDDI [52] and eSpeak [28] are two specifications being defined to enable

automation of business-to-business interactions. Both systems use XML as a

specification language to describe services, and define a rich framework for ser-

vice discovery. Like most other systems, neither UDDI nor eSpeak exports

a symmetric interface to servers and customers. Furthermore, since the em-

phasis in these frameworks is on service discovery and not resource allocation,

the matchmaker provides a list of candidate servers to the customer, who then

chooses one or more servers based on subjective criteria.
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Chapter 4

ClassAd Indexing

4.1 Intuition

Consider a simple scenario in which all classads have a single implicit port named

“other,” and that offer classads have a single numeric attribute named y, and

all request classads have a single numeric attribute named x. Furthermore, as-

sume each classad constrains the numeric attribute of its candidate match with

a single inequality. Examples of classads that follow the above assumptions are

illustrated in Figure 16. The fundamental intuition we wish to communicate

Offers Requests
[ x=10; Constraint=other.y>=7 ] [ y=8; Constraint=other.x>=8 ]
[ x=7; Constraint=other.y<=5 ] [ y=3; Constraint=other.x<=15 ]

Figure 16: Simple classads for indexing

is that these classads may be represented as (degenerate) rectangles in the x-y

plane, and that intersecting offer and request classad rectangles signify candi-

date matches. For example, the first offer may be represented by the point set

{(x, y)|x = 10, y >= 7}, which is a ray in the x-y plane extending from the

point (10, 7) vertically, a very thin long rectangle. Similarly, the first request is
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Figure 17: Classads as rectangles in the x-y plane

a horizontal ray. Since the two sets intersect, the classads match (Figure 17).

The availability of sophisticated data structures for rectangle management and

querying enables us to efficiently identify compatible classads using this spatial

approach to matchmaking. The spatial data structures may be thought of as

indexes on both the descriptive attributes and constraints of classads.

Despite the obvious intuition obtained from the above example, the actual

indexing scheme is considerably more complicated due to the semi-structured

nature of the classad data model. Difficulties include the presence of common

attribute names in both offers and requests, the possibly large number of at-

tributes in classads resulting in a large number of indexes, similarly named

attributes with different types, and attributes completely absent from classads

and constraints of classads. We first describe a restricted data model on which

we base our indexing infrastructure, and discuss the basic indexing algorithms

ignoring the above concerns. We then sequentially augment our indexing model
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to address each of the above difficulties.

Finally, it is important to note that due to the embedding of the matchmak-

ing framework in a shared resource environment, there are externally defined

factors (such as priority schemes) that define the order in which requests must

be satisfied. Since the priority scheme may not, in general, have any correspon-

dence with the rectangle geometry of the requests themselves, bulk processing

techniques based on rectangle geometry (such as the plane-sweeping algorithms

commonly used to detect rectangle intersections) are not appropriate. Instead,

only offer classad rectangles are stored in a spatial index, and each request

is used in turn as a window query to probe the index and identify compati-

ble offers. After compatible candidates are identified, algorithms that reconcile

candidate preferences, system priorities and other policies are invoked to select

a single candidate, after which the corresponding rectangles of the candidate

are removed from the index, and the process is repeated for the next request.

4.2 The Indexing Data Model

The classad data model is extremely general: each named expression may be

arbitrarily complex. In practice, however, most attributes found in classads are

equivalent to single values either because they are already literal expressions, or

because they are constant expressions which can be completely evaluated locally

since they do not involve attributes from candidate match classads. In other

words, most attributes resolve to single values after applying the specialization
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algorithm discussed in Section 2.6.1. Similarly, we note from practice that most

constraints are boolean combinations of comparisons of foreign attributes with

constant expressions. We use these observations to define an indexing scheme

that is optimized to operate with classads in this observed form.

We first define our idealized indexing data model (IIDM) and then describe

the equivalence of classads in IIDM form to (hyper) rectangles. We then identify

forms of classads that deviate from the IIDM, but which can still be accommo-

dated in the indexing scheme, albeit at reduced efficiency.

4.2.1 IIDM Structure

The IIDM is a restriction of the classad data model, where attributes are con-

stant expressions, and constraint expressions are in disjunctive profile form

(DPF).1 An expression is in DPF if it is a disjunct of one or more profiles,

where each profile is a conjunct of one or more properties, and each property is

a comparison between an attribute and a constant expression.

These definitions are captured in BNF notation in Figure 18. It is important

to bear in mind that the BNF grammar only describes the logical structure of

indexable classads, and not their physical syntactic structure. Thus, although

the grammar indicates that attributes must exist within the port of a classad,

the attributes may actually exist in a lexical super scope of the port in question.

Furthermore, the non-terminal ConstantExpression describes a evaluation-time

1The structure of rank expressions does not concern us, since we are only interested in
identifying compatible classads.
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IIDMClassAd ⇒ IIDMPort∗

IIDMPort ⇒ Attribute∗ Constraint

Attribute ⇒ ConstantExpression

Constraint ⇒ Profile (|| Profile)∗

Profile ⇒ Property (&& Property)∗

Property ⇒ AttributeName Relation ConstantExpression

Relation ⇒ < | <= | == | != | >= | >

Figure 18: Informal IIDM grammar

characteristic rather than the syntactic structure of an expression. The set

of values in the IIDM is also restricted from the general classad data model

to string, numeric, boolean, absolute time, and relative time values. Integer

and real values are identified by the IIDM as “numbers,” and undefined, error,

classad and list value types are not considered for indexing.

4.2.2 Rectangle Equivalence

Each indexable classad (i.e., each classad in IIDM form) can be converted into

a set of rectangles, which are in turn cross-products of one or more independent

intervals. In general, each port yields one or more rectangles that are obtained

from the attributes and constraints expressed in that port. Each disjunct in a

constraint (i.e., each profile) corresponds to a rectangle, and each conjunct in

the profile (i.e., property) corresponds to an end-point of an interval in that
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rectangle.2 The rectangle conversion algorithm therefore is mostly a recursive

traversal of a classad’s constraint expression that creates new rectangles for each

profile, and adds interval bounds for each property encountered within a profile.

It is interesting to note that certain kinds of consistency errors in constraints

that cannot be easily detected through other means (like specialization) can be

detected as part of the rectangle conversion process. Consider the constraint

other.x < 10 && other.x > 12, which obviously cannot be satisfied. We can

detect this error easily because the lower bound of the corresponding interval

must exceed the upper bound of the interval — a contradiction. We call this

error a value consistency error because it violates the consistency requirements

of an interval in the context of the interval’s domain, which, in this case, is the

set of real values. Note that although the expression is contradictory, it does

not evaluate to false under specialization (i.e., partial evaluation) because the

attribute x is foreign and absent.

A second consistency error arises when the same attribute is compared to

values of different types in the same profile, which we call a type consistency

error. We postpone the discussion of type consistency errors until we consider

the generalization of the indexing infrastructure to multiple types.

2Due to two minor complications, properties and profiles do not correspond bijectively
to the set of resulting intervals and rectangles. First, some constraints result in two-sided
intervals (e.g., other.x > 10 && other.x < 50), so several properties may collectively define
a single interval. Second, unlike all other comparison operators, the not equal operator (!=)
renders into two disjoint intervals in the same dimension, so a single property may yield more
than a single rectangle.
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4.2.3 Deviation from the IIDM

Although the IIDM describes the vast majority of classads observed in practice,

we also cover some of the exceptions. Since many different attributes, properties

and profiles constitute the classad, minor deviations from the IIDM may still be

overcome by using remaining information from the classad to include or exclude

it as a candidate match.

We consider two relaxations: attributes that are arbitrary expressions, and

properties that are arbitrary expressions. It is easily seen that these relaxations

are very substantial, as the relaxed IIDM describes arbitrary 3 classads! Thus,

in a certain perverse sense, the indexing model can actually index arbitrary

classads. We nevertheless do not make this claim, as it does not accurately

capture the motivations and assumptions underlying our indexing model.

We postpone further discussion of these relaxations until Section 4.4.5, where

many details of indexing the semi-structured data model are disclosed.

4.3 Indexed Matchmaking with Rectangles

Matchmaking with rectangles is simple. Conceptually, the change is analogous

to using an index nested loops join algorithm instead of a tuple nested loops

algorithm, where both indexed data and index query keys are rectangles (i.e., a

spatial join). See Algorithm 1.

3If the constraint deviates from DPF, the “outermost non-conformant” expression, which
in the worst case may be the entire constraint, may be treated as the arbitrary property.
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Algorithm 1 Brief Indexed Matchmaking Algorithm Outline

1: O ← offer classads
2: R← request classads
3: Orect ← classads in O converted to rectangles
4: Oindexed ← indexed intervals of rectangles in Orect

5: Rsorted ← R sorted by priority
6: for each C in Rsorted do
7: R← convert C into a rectangle
8: M ← all rectangles in Oindexed intersecting R
9: B ← pick best match from M

10: output(B,R)
11: remove B from Oindexed

12: end for

Assume that all requests and offers follow respective schemas and place con-

straints on all attributes of the target match, so that all rectangles involved

in the match are of the same dimensionality. (In effect, the above assumption

imposes a structured data model, as opposed to the semi-structured model in

actual use, to simplify the exposition of the indexing and querying process.)

Under this assumption, the rectangles may be stored in any of the many excel-

lent multidimensional indexing structures like grid files, R-trees and hB-trees

(see [20] for an excellent survey of multidimensional data access methods). The

index interrogation in line 8 is a window query that returns all possible matches

for the request R, from which the best match B is obtained through a process

that is outside the scope of the discussion. Finally, the matched offer is re-

moved from the index, thus “consuming” the offer, after which the next request

is matched.

We now describe the indexing scheme for semi-structured data by iteratively
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relaxing aspects of the above assumption of uniform structure, and discuss the

required modifications.

4.4 Indexing Semi-Structured Data

4.4.1 High and Variable Dimensionality

The first level of complexity we consider is the high and variable dimension-

ality of classads. In practice, it is common for request and offer classads to

access approximately six to eight attributes from each other, requiring eight di-

mensional rectangles. Spatial data structures that require strictly interleaving

levels for various dimensions, or naive nesting of data structures to represent

higher dimensional rectangles scale poorly and impose high overhead to repre-

sent the relatively moderate numbers of high dimensional rectangles prevalent

in matchmaking scenarios.

Another problem of extreme importance is that not all rectangles are of

the same dimensionality. The very distributed nature of our framework implies

that different offers and requests both represent themselves and constrain each

other in possibly distinct and idiosyncratic ways. The problem is exacerbated

by the presence of heterogenous resources, such as workstations and software

licenses, which may have completely different namespaces and therefore, in a

certain sense, do not meaningfully belong to the same “rectangle space.”

Our solution is to independently index each dimension with a one-dimensional
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data structure, which makes it trivial to store rectangles of varying dimensions.

Rather than a single multi-dimensional index, we therefore have a collection

of one-dimensional indexes, each identified by the name of the attribute being

indexed (i.e., the dimension name).

We use the interval tree data structure [13] as our index mechanism. The

interval tree is a time and space optimal in-memory data structure that can

efficiently store a large number of intervals and, when presented with a “window”

interval, retrieve the stored intervals that intersect the window.

The advantage of storing rectangles intervals in independent structures is

space efficiency. The only intervals stored in an index are those that belong

to rectangles which have an interval in the dimension of concern. Thus, small

dimensional rectangles do not impact the space requirements of indexes on di-

mensions they do not have.

However, there are two disadvantages to this scheme. First, the spatial

pruning effects that are obtained when querying a single spatial data structure

are lost. By this we mean that during the query process, if it is determined that

certain rectangles do not intersect the query window along some dimension,

then the other intervals of those rectangles do not have to be considered further

since those rectangles cannot possibly be in the answer set. By decoupling the

dimensions into separate indexes, we cannot benefit from the above pruning

effects. The second disadvantage of our scheme is the necessary complication in

both specification and implementation of multiple index management.
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While the first disadvantage is inherent in our approach, the second dis-

advantage is marginal since the presence of multiple indexes (of some sort) is

required to handle the case of similarly named attributes with different types,

as discussed in Section 4.4.4.

4.4.2 Similarly Named Attributes

Consider the following two completely valid compatible classads.

[ x = 7 ; Constraint = other.x > 1 ]

[ x = 3 ; Constraint = other.x < 9 ]

It is clear that these classads cannot be correctly represented as conventional

rectangles. While this example appears contrived, it illustrates the difficulty

imposed by the unreasonable assumption of disjoint namespaces between re-

quests and offers, especially in a decentralized data model — commonly named

attributes such as Name and Type may exist in many classads.

Our solution is to partition the intervals of every rectangle into exported

reference and imported reference sections, which are generated from the con-

straints and attributes of classads respectively. Separate indexes are maintained

for exported and imported intervals. Furthermore, the exported dimensions of

the query rectangle only query the indexes of imported attributes and vice versa.

In the above example, the two classads would be rendered into the following

rectangles.
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ClassAd 1 ClassAd 2

Imported x : [7, 7] x : [3, 3]

Exported x : (1,∞) x : (−∞, 9)

As can be seen, the imported interval of classad 1 intersects the exported interval

of classad 2 and vice versa, correctly identifying the two matching classads.

4.4.3 Identifying Attributes to Index

A recent snapshot of Condor revealed almost one hundred and fifty distinct at-

tributes in request and offer classads. Clearly, the overhead of indexing all these

attributes is prohibitive especially since only a very small number of attributes

are actually accessed in any matchmaking cycle.

Rather than indexing all classad attributes, we employ an adaptive approach

in which only attributes that are accessed are indexed. The set of attributes

that are accessed by offers (the offer external reference set) is identified by

taking the union of the external references of all offer constraints. Similarly, the

attributes accessed by requests (the request external reference set) is determined

by taking the union of all external references of all request constraints. The

external reference set of a single classad corresponds exactly to the dimension

names of its exported intervals. Furthermore, since the external references of

offers map into the attributes of requests, the exported reference set of offers

is also the imported reference set of requests (and vice versa). Thus, detecting

the external reference sets of offers and requests completely determines the sets
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of indexes to be constructed.

External reference set determination is one of the first steps performed when

matchmaking with indexes. The subsequent rectangle conversion algorithm is

performed in the context of given exported and imported reference sets, so that

missing or deviant attributes and constraints in each rectangle may be identified

and accounted for. Further details of this process are presented in Section 4.4.5.

4.4.4 Type Heterogeneity

An important consequence of a semi-structured data model is the possibility of

similarly named attributes with different types, as with x illustrated below.

[ x = 73282; Constraint = other.y == "foo" ]

[ x = "asd"; Constraint = other.y == "bar" ]

To handle this situation, we create separate indexes for each distinct type (in

the classad language sense) of attribute encountered. Since indexes are keyed

by attribute name, we augment index names with type information by means

of a simple name mangling scheme.

Partitioning indexes on the basis of type as above is a valid approach for the

classad data model since it is not possible for a single expression in property

form to be satisfied by attributes of multiples types. (This trick would not work

if the classad language automatically converted strings to numbers as required

by context.) With respect to the above two classads, the query other.x > 10

will only be satisfied by the first classad, while the query other.x > "a" will
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only be satisfied by the second. Thus, we note that all information required to

select the index to query is available in the query itself: the attribute name is

obtained from the left hand side of the comparison, and the type information

required to mangle the name is obtained from the value on the right hand side

of the comparison.

The observation on partitioned indexes also motivates the definition (and

detection) of type consistency errors as discussed in Section 4.2.2. Since a sin-

gle classad can only answer at most one of several “type inconsistent” property

queries on the same attribute, a profile consisting of a conjunct of such incon-

sistent properties cannot be satisfied. Such type consistency errors are detected

during the rectangle conversion process to identify defective classad constraints

prior to the matchmaking process.

4.4.5 Absent Attributes and Constraints

The most involved issue in the indexing model is accounting for absent attributes

in classads, unspecified properties in constraints, and other deviations from the

IIDM. Our solution is to use a more detailed description of rectangles to provide

sufficient information to account for differences. A rectangle’s intervals are still

partitioned into imported and exported intervals, which respectively correspond

to the attributes and constraints of the relevant classad. However, additional

distinctions are introduced to identify dimensions that are either absent from

the idealized fully-structured model or otherwise deviant from the IIDM due to
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the presence of arbitrary expressions that cannot be rendered into sets of named

intervals.

The matchmaking algorithm then performs the rectangle intersection algo-

rithm with respect to the available specified intervals, and “patches” the results

appropriately to account for missing or deviant intervals.

4.5 The Complete Indexing Solution

We now integrate solutions to all the above issues and present the complete

indexed matchmaking solution. We first present an overview of the algorithm,

and then discuss details of the algorithm and specific data structures.

4.5.1 Overview

The indexed matchmaking algorithm proceeds in two phases. In the Setup

phase, the required classads are obtained, preprocessed and stored in efficient

data structures. The Setup phase is then followed by the Match phase, when

request classads are used in turn to probe the indexed structures and matches

are identified.

Offer and request classads are obtained in the first step of the Setup phase,

after which offer and request external reference sets are determined. External

references are identified by applying the algorithm detailed in Section 2.6.2;

essentially a bound/free variable identification algorithm that only reports the
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free variables reachable from a classad’s constraints. The offer and request

external reference sets are then used as exported and imported reference sets

respectively to convert the offer classads to a set of rectangles. This conversion

process and the details of representing single rectangles are discussed in Sec-

tion 4.5.2. During the conversion process each rectangle is assigned a unique

rectangle identity number (RID), which serves as a convenient handle to name

rectangles. Offer rectangles are then aggregated, indexed and stored in efficient

structures as discussed in Section 4.5.3. Finally, the request classads are sorted

by an externally defined priority order, ending the Setup phase.

In the Match phase, request classads are considered one at a time to iden-

tify matches. Each request classad is first converted into rectangle form, and

the resulting structure is used as a window query to the index structures. Sec-

tion 4.5.4 discusses the query algorithm that is applied to yield the set of all

candidate matches. The best match from the candidate set is then selected

by criteria outside the scope of this chapter. The match is recorded and the

matched offer is removed from the index structures.

4.5.2 Rectangle Conversion

Rectangle conversion occurs in the context of given sets of imported and ex-

ported references, which in essence, define a “super-schema” encompassing all

the “schemas” required by individual classads. Considering the possibility of

missing and unstructured information in individual classads, each rectangle R
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obtained from a classad C may be characterized exactly (for the purposes of

indexing) by the following information.

Imp(R) A set of intervals named by attributes in the the imported reference set

that are constant expressions in the classad in question. Since constant

expressions evaluate to single values, the intervals in this set are degenerate

(i.e., single points).

Impabsent(R) A subset of the imported reference set corresponding to attributes

that are absent from the classad in question.

Impdeviant(R) A subset of the imported reference set corresponding to attributes

that are present in the classad, but are not constant expressions.

Exp(R) A set of named intervals corresponding to the constraints established

on attributes named in the exported reference set, which are present as

properties in the DPF constraint.

Expabsent(R) A subset of the exported reference set corresponding to attributes

that are not present in Exp(R).

Expdeviant(R) A single boolean flag that is true if the profile in the constraint

corresponding to the rectangle R has a sub-expression that is not in prop-

erty form.

The following points about the above characterization are worth noting.
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1. Every reference from the imported reference set applied to the classad will

appear in exactly one of Imp(R), Impabsent(R) and Impdeviant(R).

2. A reference from the exported reference set applied to the classad will

appear in exactly one of Exp(R) and Expabsent(R).

3. The names of intervals in Imp(R) and Exp(R) are name mangled, but the

attribute names in Impabsent(R), Impdeviant(R) and Expabsent(R) are not

name mangled.

4.5.3 Index Structures

The rectangle characterizations described above are obtained for each offer rect-

angle, collated and stored in the following data structures.

Imported Interval Index Map A map of mangled names to indexes. For

each mangled name M , the corresponding index indexes intervals in the M

dimension from Imp(R) for each offer rectangle R. Given a query interval

(or window) W and mangled name M , the operation ProbeImported(M, W )

probes the Imported Interval Index Map and returns the set of RIDs of

rectangles that have an interval that intersects W in the M dimension.

Unimported Dimensions Map A map of names to sets of RIDs, this struc-

ture records the rectangles that have absent imported attributes for any

given named attribute. Given an unmangled name N , the operation
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ProbeUnimported(N) probes the Unimported Dimensions Map and re-

turns the set of RIDs of rectangles that do not have an imported interval

for attribute N .

Deviant Imported Intervals Map Also a map of names to sets of RIDs, the

Deviant Imported Intervals Map records the rectangles that have deviant

imported attributes for each named attribute. For an unmangled name

N , the operation ProbeDeviantImported(N) probes the Deviant Imported

Intervals Map and returns the set of RIDs of rectangles that have N as a

deviant imported attribute.

Exported Interval Index Map Similar to the Imported Interval Index Map,

the Exported Interval Index Map is a map of mangled names to indexes

that index intervals from Exp(R) along the named dimension for each offer

rectangle R. Given query interval W and mangled name M , the operation

ProbeExported(M, W ) returns the set of RIDs of rectangles that have an

interval that intersects W in the M dimension.

Unexported Dimensions Map A map of names to sets of RIDs, this struc-

ture identifies rectangles that do not have exported intervals for the spec-

ified dimensions. Thus, given an unmangled name N , this data structure

enables the operation ProbeUnexported(N), which returns the set of RIDs

of rectangles that do not have any exported interval for attribute N .
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Deviant Exported Rectangle Set A set of rectangle IDs that identifies rect-

angles that have a deviant expression in their constraints. Since this struc-

ture is itself a set of RIDs, no higher-level operations are required to be

defined for its use.

In addition to these primary index structures, maps of RIDs to classads and

ports are also maintained, so that given an RID, the port containing the named

rectangle, and the classad containing the port in question can be efficiently

identified.

4.5.4 Querying and Match Identification

The query window used to probe the indexed offers is obtained by converting

the relevant request classad into rectangle form. Thus, the query window too

has imported and exported sections, each of which is composed of normal, ab-

sent and deviant components, requiring a detailed case analysis of the query

components vis a vis the index structures.

It is important to note that due to the presence of deviant components in

both offers and requests, the validity of a match cannot always be completely

determined from indexed information alone. Our indexing scheme returns a su-

perset of compatible classads, and actual compatibility of individual candidates

from the result set must be verified via constraint evaluation prior to match

creation.

The overall process of querying given query rectangle Q is as follows.
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1. We begin by inserting the RID of every rectangle in the (provisional) result

set.

2. Given a (mangled) name-interval pair (M, I) from Imp(Q), the set of

rectangles satisfied by the interval must exist in one of the following three

cases.

(a) All rectangles that export intervals that intersect I in dimension M .

(b) All rectangles that do not export an interval in dimension N , where

N is the demangled name of M . These are the classads that do not

place a constraint on the attribute N .

(c) All deviant exported rectangles. Since nothing is known about the

structure of constraints in deviant exported rectangles, they must be

considered as candidates.

Since any rectangle that exists in the eventual result set must exist in one

of the above three cases, we intersect the provisional result set with the

union of the RID sets obtained from these three cases. This process is

repeated for each name-interval pair in Imp(Q).

3. At this stage in the process, every rectangle whose constraints are satisfied

by the defined attributes of the query are included. We must, however,

now exclude rectangles that have placed constraints on attributes that are

absent in the query. Thus, for every name N in Impabsent(R), we remove

all rectangles that place a constraint on N from the provisional result.
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4. We now consider the processing of exported components in query window.

Given a (mangled) name-interval pair (M, I) from Exp(Q), the rectangles

that satisfy this interval must exist in one of the following cases.

(a) All rectangles that import intervals that intersect I in dimension M .

(b) All rectangles that have deviant imported attributes named N , the

demangled version of M .

As in the imported intervals case, since any rectangle that exists in the

eventual result must exist in one of the above two cases, we intersect the

provisional result set with the union of the RID sets obtained from the

above two cases. However, we must now exclude rectangles that do not

import the attribute that is being constrained, so we subtract the set of

RIDs of rectangles that do not import N , the demangled version of M .

This procedure is then repeated for every name-interval pair in Exp(Q).

5. The provisional result remaining at this time is the final result.

The correctness of this procedure is not clear at first. Intuitively, we expect

a more complicated algorithm to account for all the cases that exist: since

each kind of imported component (imported, unimported and deviant imported)

must be considered in turn with each kind of exported component (exported,

unexported, deviant exported) it is natural to expect nine cases for the imported

section of the query window, and nine more for the exported section of the query

window.
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The following observations are the key to understanding the absence of these

cases.

1. Our querying procedure is an exclusionary algorithm that begins by as-

suming that all rectangles exist in the result set and then rejects rectangles

known to not intersect the query rectangle. Thus, the absence of addi-

tional cases in the algorithm only signifies that the interaction between

the exported and imported components in those cases do not provide any

information that would allow the rejection of additional rectangles.

2. Rectangles rejected by one component of the imported or exported section

cannot be re-admitted by another component of either section. This prop-

erty holds because of an extension of the principle that two iso-dimensional

rectangles intersect if and only if their projected intervals intersect in ev-

ery dimension. In direct analogy, if the interval of some rectangle does not

intersect the query window’s interval along that dimension, that rectangle

can be safely excluded from the result set irrespective of the presence,

absence or complexity of other attributes and constraints of the rectangle.

For example, from the informal query procedure description we see that the

imported intervals are indeed considered against all three variants of exported

components. However, unimported attributes in the query window are only

considered against exported intervals, and not unexported or deviant exported

components. Upon reflection, it is clear that these cases do not allow the re-

jection of any rectangles: the interaction between absent attributes vis a vis
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absent constraints and arbitrarily complex constraints does not let us identify

any rectangles that may be excluded.

The algorithm for determining query results is illustrated in Algorithm 2.

Except for a few code motion optimizations, the algorithm is a straightforward

transcription of the overview presented previously to psuedo-code. The algo-

rithm assumes that the query is in DPF, and is therefore composed of several

rectangles. The query procedure described previously is applied to each rectan-

gle, and the query results are aggregated through a set union operation.

4.6 Performance Study

The goal of the following performance study is not to merely establish that

the indexing scheme outperforms the naive record-at-a-time expression evalu-

ation mechanism — this result is expected. We instead wish to compare the

relative performance of the two schemes to determine how much more efficient

the indexing scheme is in workloads that vary parameters such as number of

attributes, domain size of attribute values, constraint complexity and number

of advertisements. We begin with a discussion of the workload used to perform

these experiments, and then present the experiment results.
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Algorithm 2 Query Algorithm

1: Input: Query window Q, index structures
2: Output: T , set of rectangle IDs
3:
4: T ← ∅
5: for each query rectangle R in Q do
6: o← U {Universal Set of all RIDs}
7:
8: {Process imported intervals}
9: o← all RIDs in Deviant Exported Rectangle Set

10: for each (M, I) in Imp(R) do
11: t← ProbeUnexported(Demangle(M))
12: t← t ∪ ProbeExported(M, I)
13: o← o ∩ t
14: end for
15:
16: {Remove candidates that constrain absent attributes}
17: u← ∅
18: for each N in Impabsent(R) do
19: u← u ∪ ProbeUnexported(N )′ {Set complement}
20: end for
21: o← o \ u
22:
23: {Now process exported dimensions}
24: for each (M, I) in Exp(R) do
25: t← ProbeImported(M, I)
26: t← t ∪ ProbeDeviantImported(Demangle(M)
27: t← t \ ProbeUnimported(Demangle(M))
28: o← o ∩ t
29: end for
30:
31: T ← T ∪ o
32: end for
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4.6.1 Workload

Each experiment in the workload consists of a number of object advertisements

and an equal number of query advertisements. Experiments identify the number

of symmetric matches for each query using both mechanisms, and measure the

elapsed time, memory usage and overheads of these two mechanisms. In spirit,

these experiments measure the efficiency of performing joins with a tuple nested

loops algorithm and an indexed nested loops algorithm. As explained earlier,

although we expect the indexed algorithm to outperform its counterpart, we

wish to know how the algorithms behave as parameters of the workload are

varied.

Each experiment in the workload is characterized by three parameters: num-

ber of advertisements, number of attributes in each advertisement and domain

size of each attribute. The constraint complexity of each advertisement is dic-

tated by the number of advertisement attributes of the workload since every

attribute of the candidate match set is constrained by either an upper or lower

bound. Attribute domain size is varied on a per attribute basis, with attributes

having a domain size of 10, or the the number of advertisements in the ex-

periment itself (denoted N). All advertisements in each experiment belong to

one of the following three domain size mixes: all attributes have a domain size

of 10, half the attributes have a domain size of 10 and the rest have domain

size N , all attributes have domain size N . These mixes are annotated as T,

M and D in the ensuing performance graphs. Attribute values are constructed
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[
A = 3;
B = 6;
C = 7;
D = 5;
Constraint =

other.Z<=5 &&
other.Y<=6 &&
other.X>=1 &&
other.W<=7

]

Figure 19: Object advertisement from the index performance workload

by picking a uniformly random number between 0 and the domain size of that

attribute. Constraints are created by similarly picking a random value, and

choosing (with equal probability) a greater than or less than comparison with

the chosen value. The final constraint for each advertisement is the conjunction

of these one-sided intervallic constraints on each attribute. Finally, to create a

semi-structured workload, the attributes or intervallic constraints of an adver-

tisement may be omitted with a 5% probability. Figures 19 and 20 show sample

object and query advertisements from the workload.

4.6.2 Results

Figure 21 compares the elapsed time performance of the expression based al-

gorithm with the index algorithm for workloads of various size. The legend

in the graph employs the notation A/n/D, where A is the algorithm (E for

expression-based algorithm, I for indexed), n is the number of attributes in
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[
Z = 0;
Y = 9;
W = 6;
Constraint =

other.A>=0 &&
other.B<=6 &&
other.C>=1 &&
other.D>=7

]

Figure 20: Query advertisement from the index performance workload

each advertisement and D is the domain size mix (T, M or D).

There are several interesting features in this graph. First, we note that many

of the curves for the expression based mechanism are co-incident, reflecting the

fact that attribute domain size does not affect expression evaluation. For clearer

exposition, only one representative curve from each of these bands is illustrated

in Figure 22.

The graph in Figure 22 also shows that the indexing algorithm outperforms

the expression-based algorithm by an enormous margin — the performance

curves of the indexed algorithm are almost co-incident with the x-axis when com-

pared to the performance of the expression-based algorithms. Finally, we note

that constraint complexity markedly affects the performance of the expression-

based algorithm.

Figure 23 shows the performance of the indexed algorithm in isolation. This

graph shows the elapsed time performance of the algorithm on workloads con-

taining up to 16,000 advertisements — eight times the workload size of the
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Figure 21: Elapsed time performance of the expression based and indexed query
algorithms.

expression based algorithm. From this graph we observe that both constraint

complexity and attribute domain size alters the performance of the algorithm.

Figure 24 illustrates the amount of memory used for creating and maintain-

ing the data structures required by the indexed algorithm. We observe that the

memory requirements of the algorithm scale linearly with the number of the

advertisements, with the slope being proportional to the constraint complexity

and attribute domain size parameters.

We finally consider the elapsed time overheads induced by the initialization

phase of the indexed algorithm. These overheads are incurred by the external

reference determination and rectangle conversion phases of the algorithm. Since
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Figure 22: Representative performance curves of the expression-based and in-
dexed query algorithms.

these processes are essentially traversals of the syntax tree of constraint expres-

sions, both external reference determination and rectangle conversion algorithms

are independent of attribute domain size Furthermore, the per advertisement

costs of these processes are not dependent on total input size. We therefore

present only the amortized per advertisement elapsed time overheads of these

algorithms plotted against constraint complexity in Figure 25.
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Figure 23: Elapsed time performance of the indexed query algorithm.

4.7 Related Work

Lorel [4] is a query framework developed for semi-structured environments that

includes a sophisticated indexing model [38]. The Lorel indexing model em-

phasizes the querying of hierarchical information via generalized path expres-

sions and pattern matching, and has many sophisticated mechanisms to tolerate

weakly typed data. The classad data model is relatively flat and has a stronger

typing system, but requires constraint indexing mechanism.

Kanellakis et. al. [30] describe a constraint indexing scheme that uses inter-

val trees [13]. However their work is not formulated for a semi-structured data

environment.

The classad notation is very similar to that of generalized tuples found in
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Figure 24: Memory overhead of the indexed query algorithm.

constraint databases [21]: the classad mechanism also employs a system of equa-

tions to specify regions of the parameter space that are of interest. The match-

making operation then intuitively reduces to a spatial join [40] between server

and customer classads. Indeed, these similarities have motivated the design of

the proposed indexing model. However, there are several differences between

classads in matchmaking and generalized tuples in constraint databases.

First, matchmaking differs from a spatial join in that matchmaking “con-

sumes” classads during the matching process — a matched classad is removed

from further consideration in the matchmaking process. Thus, while a given

classad may never occur in more than one match in matchmaking, a spatial join

over the classad domain will result in the generation of all valid matches. Disam-

biguation and match selection must then be performed by a second “filtering”
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process that is independent of the spatial join.

A second difference between constraint databases and classads is that clas-

sads employ a semi-structured data model — each classad in a collection may

potentially carry a distinct schema. In contrast, constraint databases require

fixed schemas over which generalized tuples are defined.
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Chapter 5

Gangmatching Algorithms

The gangmatching model described in Chapter 3 provides an expressive declar-

ative basis for a matchmaking framework. We now consider the problem of

efficiently identifying gangs; i.e., implementing gangmatching algorithms.

We begin with a discussion of some basic correctness and performance is-

sues in gangmatching algorithm implementation. The methods used to measure

algorithm efficiency are then presented, including a description of the base work-

loads used in these measurements. We then present a number of gangmatching

algorithms and discuss the main characteristics of the algorithms as observed

under the base workloads.
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5.1 Gangmatching Algorithm Issues

5.1.1 Alternative Algorithms, Combinatorics and Effi-

ciency

Gangmatching is fundamentally a combinatoric algorithm, since it involves mar-

shaling consistent aggregates of advertisements. In the abstract, the gangmatch-

ing problem may be solved by enumerating all possible combinations of adver-

tisements (i.e., all possible gangs), and only selecting those combinations (if

any) in which all defined constraints are satisfied. Needless to say, such brute-

force techniques are untenable: Even when only a few thousand classads are

involved in gangs of size three, the total number of possible combinations is on

the order of hundreds of billions.

Fortunately, the gangmatching model is declarative — rather than defining

and legislating a procedure for for finding gangs, it only defines what valid gangs

are. Thus we may employ alternative strategies that are far more efficient

at identifying valid gangs. For example, the “declare before use” nature of

advertisement ports structures the gangmatching problem so that inconsistent

gangs may be detected before entire gangs are marshaled. Thus, exhaustive gang

enumeration is not required for even the simplest gangmatching algorithms.

The performance of the various gangmatching algorithms presented here vary

primarily due to the efficacy of their mechanisms at further reducing the number

of combinations that need to be considered.
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5.1.2 Preferences

The gangmatching model provides a sophisticated set of mechanisms for defin-

ing and resolving preferences. The preference expression and docking vector

mechanisms described in Chapter 3 collectively define a complete model of

gangmatching preferences that may be used as the behavioral specification of a

preference-aware gangmatching algorithm. Furthermore, implementation of the

defined preference model is straightforward in the restricted bilateral matching

case. This is however not the case for general gangmatching — the problem

of efficient preference-free gangmatching is considerable in itself, and must be

understood before general preference-aware algorithms are addressed.

In this dissertation we therefore only investigate the problem of preference-

free gangmatching. Since gangmatching algorithms that consider preferences are

extensions of preference-free algorithms, we wish to first establish fundamental

insights and techniques that will enable the formulation of more advanced and

capable algorithms. In Chapter 6 we show how the mechanisms developed here

may be used to formulate preference-aware algorithms.

5.1.3 Absence of Deadlock

Gangmatching provides the key functionality of “resource co-allocation” in a

matchmaking resource management framework. As such, the gangmatching

formalism must guarantee a principal correctness criterion of multi-resource

allocation schemes: absence of deadlock. In the context of gangmatching, the
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direct analogue of deadlock occurs when two (or more) partially marshaled

gangs are circularly dependent in the sense that each partial gang requires to

be matched with an advertisement that is currently a member of some other

partial gang.

Deadlock elimination is straightforward in gangmatching due to the for-

malism of root ordering, which dictates that higher priority roots must be

completely satisfied before lower priority roots are considered. Deadlock may

therefore be eliminated by only matching high-priority roots advertisements

completely, or not at all. When the unsatisfiability of a gang is detected, all

advertisements currently marshaled in the gang are returned to the advertise-

ment pool. Thus, in a sense, gangmatch operations are atomic since they either

occur completely or not at all. The above property is sufficient to guarantee

absence of deadlock [8].

5.2 Performance Evaluation Methods

Before presenting the various gangmatching algorithms, we first describe the

methods used to measure algorithm performance. Every algorithm is first eval-

uated under a common base workload, which consists of various instances of the

job-machine-license gangmatching problem. This workload has been engineered

to be relatively simple, so that the tendencies and characteristics of algorithms

may be easily isolated and identified. However, the workload is also fairly real-

istic, and includes many parameters that would be encountered in solving the
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job-machine-license problem in practice. Algorithms are also selectively exam-

ined under specialized workloads highlight their strengths and weaknesses.

5.2.1 The Base Workload

The base workload consists of several experiments, each of which tests the ef-

ficacy of the algorithm on inputs with various numbers of machines, licenses

and jobs, where the number of advertisements range from a few hundred to

several thousand. Furthermore, the relative numbers of licenses and jobs, and

the constraints associated with licenses are manipulated to exercise algorithms

under different conditions.

In any given experiment, the number of jobs is always the same as the num-

ber of machines. However, the experiment may belong to one of two regimes:

one in which there are as many licenses as jobs (the 100% regime), or one in

which there are half as many licenses as jobs (the 50% regime). Furthermore,

the experiment may belong to one of four selectivity indexes, namely 1, 2, 4 and

8. For each selectivity index n, the machine and license sets associated with

the experiment are each divided into n disjoint partitions, and licenses from

any given partition p are only valid on machines in the corresponding machine

partition p. For example, workloads with a selectivity index of 2 partition ma-

chines and licenses into two partitions. Licenses from the first license partition

would only be valid on machines in the first partition and vice versa. For any

given experiment size, the full parameter space of license percentage regimes
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and selectivity indexes is explored.

In graph legends, the performance curves of algorithms are annotated as

A/L/n, where A is the algorithm being considered, L is the license percentage

(i.e., 50 or 100), and n is the license selectivity index. The algorithm component

of the annotation is occasionally omitted if the algorithm of interest is known

from context.

Machine Model

The characteristics of machines have been roughly modeled on the composition

of the University of Wisconsin-Madison Condor pool as of March 2000. Each

machine is assigned an architecture and operating system combination with

probabilities as shown in Figure 26. The physical memory of each machine

Architecture/Operating System Probability
INTEL/LINUX 0.3191

INTEL/SOLARIS26 0.2127
INTEL/WINNT40 0.2411

SGI/IRIX6 0.0212
SUN4u/SOLARIS26 0.0390
SUN4u/SOLARIS27 0.0390
SUN4x/SOLARIS26 0.0766
SUN4x/SOLARIS27 0.0524

Figure 26: Base workload machine architecture/operating system distribution

is assumed to be independent of its architecture and operating system, and is

assigned with probabilities as shown in Figure 27. Total virtual memory of the

machine is always double the modeled physical memory, and available virtual
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Memory (Megabytes) Probability
32 0.070
64 0.400
128 0.200
256 0.200
800 0.130

Figure 27: Base workload memory distribution

memory is uniformly random between 20% and 90% of total virtual memory.

Finally, each machine is assigned a unique integer key in [0, n), where n is the

number of machines being modeled. An example machine advertisement from

the base workload is shown in Figure 28.

[

Key = 143;

Type = "Machine";

Arch = "INTEL";

OpSys = "WINNT40";

Memory = 64M;

VirtualMemory = 83.235176M;

Ports =

{

[

Label = Job;

Constraint = Job.MemoryReqs<Memory-15M

]

}

]

Figure 28: Example machine advertisement from the base workload.



126

License Model

Licenses do not have any attributes that need to be modeled stochastically.

However, the constraints generated for individual licenses are varied to imple-

ment license selectivity indexes. Specifically, given selectivity index k, the set

of generated licenses are virtually partitioned into k disjoint partitions that are

numbered from 0 through k−1. The constraint generated for licenses in partition

i is that the HostID provided by the job must be in the interval [�n
i
�i, (�n

i
�+1)i),

where n is the number of machines generated for the workload. In other words,

licenses from partition i are only valid on machines in the corresponding ma-

chine partition i. Finally, the number of licenses created (relative to the number

machines) is also varied to implement the 50% and 100% license regimes. An

example license advertisement from the base workload is shown in Figure 29.

[

Type = "License";

App = "sim_app";

Ports =

{

[

Label = Site;

Constraint = Site.HostID >= 0 && Site.HostId < 1000

]

}

]

Figure 29: Example license advertisement from the base workload.
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Job Model

In contrast to machines and licenses which only have one port each, all jobs

have two ports: one to dock with machines, and one to dock with licenses. The

contents of the machine port are modeled as follows. The image size of a job

is modeled as a random variable whose value is uniformly between 20% and

80% of twice the memory size, where memory size is first generated using the

probability distribution of Figure 27. The memory requirements of a job is a

uniformly random number between 20% and 50% of the job’s image size. Finally,

the architecture and operating system constraints of the job are generated using

the probability distribution shown in Figure 26, and a final constraint requiring

that the candidate machine’s available virtual memory be greater than the job’s

image size is appended.

The main attribute of interest in the license port of the job is the HostID

attribute, which evaluates to the Key attribute of the machine docked at the

Cpu port.

An example job advertisement from the base workload is shown in Figure 30.

5.2.2 Performance Evaluation Method

Each experiment uses the gangmatching mechanism under consideration to cre-

ate gangs for each of the request advertisements (i.e., jobs). The requests are
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[

Ports =

{

[

Label = Cpu;

ImageSize = 13461450.030324;

MemoryReqs = 2860414.100368;

Constraint = Cpu.Arch=="INTEL" &&

Cpu.OpSys=="LINUX" &&

Cpu.VirtualMemory > ImageSize

],

[

Label = License;

HostId = Cpu.Key;

Constraint = License.App=="sim_app"

]

}

]

Figure 30: Example job advertisement from the base workload.

considered in the same order as presented to simulate the presence of an exter-

nally defined request prioritization. Thus, each experiment simulates a “match-

making cycle,” an abstraction that encompasses the periodic matchmaking ac-

tivity in the Condor system. Of course, aspects such as match notification

(which is common to all algorithms) are not considered in these experiments.

While elapsed time is arguably the most meaningful metric of algorithm

efficiency, we also record “secondary statistics” that count and measure the ac-

tivities and costs of gangmatching algorithms. The two statistics of import are

number of expression evaluations, and number of index probes. The roles that
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these operations play in the ensuing algorithms, and the corresponding impli-

cations on performance are noted in the discussion section for each algorithm.

In most cases, the insight that secondary statistics provide allows comparisons

between algorithms purely on the basis of these statistics. As will be seen, such

comparisons provide better intuitions of algorithm behavior.

Finally, it is important to note the number of successfully matched jobs is

dependent on the search strategy used. (The reasons for this effect are dis-

cussed below in Section 5.5.2.) Thus, it is expected that the number of jobs

successfully matched given the same workload changes with the algorithm used.

The deviations are minor, however, and are usually within 5% of the size of the

workload. More serious deviations (if they occur) are noted in the performance

study of the algorithm in question.

5.3 Naive Gangmatching

The first algorithm that we consider is the simplest and most “natural” solu-

tion — a top-down gangmatching algorithm that uses the classad expression

evaluation mechanism to determine compatibility between advertisement ports.
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5.3.1 Algorithm Description

The input to the algorithm is an advertisement, which has been designated as

the root advertisement (or root) of the required gang. In keeping with the in-

herent left-to-right bias of the gangmatching model, the algorithm attempts to

fill each port in the order they are listed in the Ports attribute (see Figure 31).

Compatibility between ports of advertisements is determined by evaluating the

Advertisement

Filled port

Unfilled port

Marshalled sub-gang

Already filled

Under consideration

Not yet filled

Backtrack direction

Fill direction

Root Advertisement

Figure 31: Operation of the Naive Gangmatching Algorithm

constraints defined in those ports. Constraint evaluation is performed by insert-

ing the respective advertisements in an evaluation environment specially con-

structed by the matchmaker in which port labels evaluate to docked candidate

ports. The flexibility of the classad language and the semantics of attribute ref-

erences allows this evaluation environment to itself be represented by a classad.

Figure 32 shows the evaluation environment after the complete gang has been

marshaled. Each advertisement is encapsulated in a “context,” which serves as

a namespace in which the desired label expressions are defined.
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[
_ctx_0 = [ Cpu = _ctx_1._ad.ports[0];

License = _ctx_2._ad.ports[0];
_ad = [ Ports =

{ [ Label = Cpu;
MemoryReqs = 2.86041e+06
ImageSize = 1.34615e+07;
Constraint = cpu.Arch == "INTEL" &&

cpu.OpSys == "LINUX" &&
cpu.VirtualMemory > ImageSize;

],
[ Label = License;

HostId = cpu.Key;
Constraint = License.App == "app1";

]
}

]
];

_ctx_1 = [ Job = _ctx_0._ad.ports[0];
_ad = [ Key = 90

OpSys = "LINUX";
VirtualMemory = 427.836M;
Memory = 800M;
Arch = "INTEL";
Type = "Machine";
Ports =
{ [ Label = Job;

Constraint = Job.MemoryReqs < Memory - 15M;
]

};
]

]
_ctx_2 = [ Job = _ctx_0._ad.ports[1];

_ad = [ Type = "License";
App = "app1"
Ports =
{ [ Label = Job;

Constraint = Job.HostID>=50 && Job.HostId<100;
]

};
]

];
]

Figure 32: Expression evaluation environment for gangmatching
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If, at any time, a particular port of the root advertisement cannot be filled

(because no compatible candidates are found), the algorithm backtracks to the

previously filled port (which is always the immediately preceding port) and

attempts to refill that port with another candidate. Depending on the success

of the refill operation, the algorithm then either continues to the succeeding port,

or backtracks yet again to the preceding port. The gangmatching algorithm fails

for the designated root if a backtrack is attempted from the left-most port of

the root.

As with all backtracking algorithms, care must be taken to ensure that

the algorithm doesn’t visit an already visited configuration as a result of the

backtrack operation, as this would lead to a non-terminating algorithm. To

prevent this situation, each port maintains a history set of candidate ports with

which docking attempts have already been made. During the refill operation,

only candidate ports that do not exist in the history set are considered.

The history set of a port is cleared when backtracking from that port. The

reason for doing so is as follows. If the algorithm backtracks from a port and

then revisits it again, at least one (and possibly more) of the port’s predecessors

have new candidates docked to them. Since the information from these new

candidates may admit matches that were previously inadmissible, the history

of the port is not valid after the backtrack.

It is easy to see that the algorithm maintains the invariant that all ports that

precede the one under consideration are docked and all ports that succeed the
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port are undocked. This invariant greatly simplifies the process of history and

backtrack management, and also ensures that all inter-port references allowed

by the gangmatching model are naturally resolved during the progression of the

algorithm.

The final detail of this algorithm that must be described is the process of

filling ports. Since the non-root advertisements of a gang may themselves have

multiple ports, the above gangmatching algorithm must be applied recursively

to each (non-root) advertisement included in the gang. A fundamental difference

between non-root advertisements and the root advertisement in that one of the

ports of a non-root advertisement must serve as a “parent link” in the gang

tree. However, due to the generality of the gangmatching model, the port

that will serve this role is not known a priori (unless, of course, the non-root

advertisement has only one port). Since the parent link identification process

must be performed before the gangmatching algorithm is recursively applied,

the ports that precede the identified parent link will not have been docked yet

(see Figure 33). Thus, the specialization algorithm described in Section 2.6.1

must be employed to identify parent link ports, If the constraints between the

parent link port and its counterpart in the parent advertisement specialize to

true or false, the compatibility of the parent link port is known. Otherwise,

the port is marked as a “tentative yes,” and used as the parent link.

Tentative parent link ports are rigorously checked for compatibility during

the recursive marshaling phase when all predecessor ports of the parent link have
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Advertisement

Filled port

Unfilled port

Parent link port
Non-root Advertisement

Root Advertisement

Note unfilled port

Figure 33: Identifying parent links requires specialization due to possible pres-
ence of undocked ports preceding the parent link.

been filled. If the parent link is indeed compatible, the port parent link status

is changed from “tentative yes” to a “positive yes,” after which the algorithm

proceeds as usual. However, if the parent link port is not in fact compatible,

the algorithm attempts to backtrack, incrementally refilling the ports preceding

the parent link port, and re-testing the parent link port for compatibility. If

the algorithm then attempts to backtrack from the left-most port (i.e., run out

of all options), the tentative parent link is re-established at the next port that

is possibly compatible with the parent advertisement’s port, after which the

algorithm proceeds as if a new candidate was being recursively matched. Of

course, if a parent link (tentative or otherwise) could not be established at any

of the candidate advertisement’s ports, the entire candidate is rejected.

5.3.2 Performance and Observations

The performance of the naive algorithm on the base workload is illustrated in

Figure 34, which plots the elapsed time of the experiment against the number
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of classads in the workload. The graph consists of two “bands” of curves cor-

responding to the 50% and 100% workloads. The bands are composed of the

curves corresponding to the various license selectivity indexes, showing that the

algorithm is not sensitive to this parameter in this workload. Comparison of

representative curves from these bands (Figure 35) with Figure 36 shows that,

as expected, expression evaluation dominates the cost of the algorithm. Al-

though expression evaluation is a relatively light-weight operation, we see that

the number of evaluations required to marshal a consistent gang of size three is

quite high even for workloads with relatively small numbers of advertisements.
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Figure 34: Elapsed time performance of the naive algorithm.

The algorithm’s basic method of testing ports of advertisements one at a
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Figure 35: Representative elapsed time performance curves for the naive algo-
rithm.

time also makes performance heavily dependent on the order in which candi-

dates are tested. The early presence of compatible machines and licenses greatly

reduces both the number of expression evaluations required to identify a com-

patible port, and the possibility of backtrack. To illustrate the consequences of

a favorable ordering, consider the best case workload which consists of a given

number of jobs, each of which is compatible with every machine and every li-

cense, and machines and licenses are perfectly interleaved. In this case, the first

resource offer tested at any point is always the correct choice, minimizing the

number of expression evaluations, and consequently, elapsed time.

Needless to say, such favorable orderings can only be observed in completely

artificial and contrived workloads. In practice (as in realistic workloads), the

advertisements of machines and licenses may exist in arbitrary permutations.
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Figure 36: Representative number of matches tested by the naive algorithm.

Furthermore, machine, license and job advertisements would be far more se-

lective in defining mutual compatibility. Finally, the natural dynamics and

heterogeneity of pools would result in varying numbers of available resources

at various times. Unfortunately, the above very likely scenario also exposes the

worst case behavior of the naive algorithm.

As with many algorithms that “search for solutions,” detecting the absence

of a solution (i.e., a consistent gang) is far more expensive than constructing

a correct solution (given that one exists) in the naive algorithm. This phe-

nomenon is clearly exemplified in the upper curves in Figures 35 and 36, which

illustrate the performance of the naive algorithm on workloads that have half as

many licenses as machines and jobs. In these workloads, at least half of the jobs

will not be able to find successful matches due to the absence of licenses. The
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naive algorithm does not have any mechanism to detect this situation. Instead,

the vacant license port of the root is tested with the port of every remaining

machine advertisement. When no candidate is found, the algorithm backtracks

and replaces the already docked machine advertisement with another compat-

ible candidate, and repeats the whole process yet again. When all compatible

machine candidates have been considered and exhausted in the root’s first port,

the algorithm finally fails.

The worst case performance of the naive algorithm may be easily derived and

expressed in terms of the number of expression evaluations performed. Given

r requests (i.e., roots), n machine advertisements, no licenses, and the assump-

tion that the machine port of each root is compatible (on average) with k of

the n machines, the number of expression evaluations performed by the naive

algorithm is r(n + kn). Thus, the algorithm is O(n3) in the worst case, when

both r and k are equal to n. Of course, the algorithm’s worst case behavior is

dependent on the workload and the gang tree topology imposed by the work-

load — the cubic polynomial is merely an artifact of our workload, which only

marshals gangs of size three.



139

5.4 LR: Indexed In-Order Gangmatching

5.4.1 Motivation

The naive algorithm’s exclusive reliance on the expression evaluation mecha-

nism is its fundamental weakness. Since there is no bulk processing facility that

can efficiently partition advertisements into “potential candidates” and “defi-

nite non-candidates,” the naive algorithm is forced to detect these sets using

the “record-at-a-time” expression evaluation mechanism. However, the classad

indexing scheme presented in Chapter 4 is exactly such a bulk processing mech-

anism. It is therefore natural to augment the naive algorithm with the indexing

scheme to obtain a far more efficient algorithm.

5.4.2 Algorithm Description

The LR algorithm is a straightforward extension of the naive algorithm. The

basic processes of the algorithm, such as left-right progression, right-left back-

tracking and history set management, are left unchanged. However, the process

of filling docks with candidate advertisements is preceded with an index probe,

which results in considerably decreasing the number of candidates that must be

considered in order to fill the port. The details of the algorithm are presented

below.

As discussed in Chapter 4, the classad indexing scheme requires several pre-

processing steps. The LR gangmatching algorithm commences by finding the
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external reference sets of all the offer and request advertisements, converting all

offers to rectangles in context of the obtained external references, and finally

indexing the offer rectangles. In addition, mappings between the offer rectangles

and the advertisements and ports from which they were derived are constructed.

When presented with a root advertisement, the algorithm commences from

the left-most port, like the naive algorithm, and proceeds towards the right-

most port. However, when attempting to fill a port for the first time, the

indexed gangmatching algorithm first converts the attributes and constraints of

the port under consideration to a “window,” which is used to probe the con-

structed indexes and efficiently identify all candidate match rectangles. The

expressions used to construct the window query are first specialized to incor-

porate all present information, and therefore derive a specific query customized

to current contents of the gang. For example, after the machine port has been

filled, the subsequent index probe issued on the license port is specialized to

find only those licenses that are compatible with the machine chosen and (of

course) the job itself.

The result obtained from the query is associated with and stored in the

advertisement’s port, much like the history set. The mappings constructed

during index creation are used to map matched rectangles to the candidate

advertisements and ports. Thus, in addition to excluding candidates that are in

the history set during fill and refill operations, only candidates that exist in the

query result are considered. The query result associated with a port is cleared
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when backtracking from that port for the same reasons that the history set is

— since the query result is derived from a window that is specialized to the

predecessor candidates of the port, changing any of the predecessors requires

invalidation of the query results.

5.4.3 Performance and Observations

The elapsed time performance of the LR gangmatching algorithm on the base

workload is presented in Figure 37. As with the naive algorithm, the graph

consists of two bands of curves corresponding to the 50% and 100% workloads,

from which representative curves are presented in Figure 38. The first observa-

tion to be made is that although the shape of the performance curves of the LR

algorithm is similar to the naive algorithm, LR is far more efficient. Whereas

the naive algorithm marshals only 500 gangs in 800 seconds, LR matches 4000

gangs in less time. A comparison of the number of expression evaluations cor-

responding to the above elapsed time measurements as illustrated in Figure 39

shows that the accuracy of the indexing scheme relegates the use of expression

evaluation to only confirm candidates, rather than identify them.

We also note that the number of index probes performed by the algorithm

(Figure 40) is equivalent to the number of expression evaluations, showing that

the indexing mechanism is extremely accurate in this workload — every expres-

sion evaluation merely confirmed the results of the query, requiring no additional

matches to be tested. It is more convenient to analyze algorithm performance
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Figure 37: Elapsed time performance of the LR algorithm.

in terms of number of index probes, as this operation will continue to play a

key role in subsequent algorithms. Further analysis of the algorithm’s behavior

is therefore performed with respect to the number of index probes.

While the indexed algorithm is clearly superior to the naive algorithm in

many respects, is also inherits some of the naive algorithm’s weaknesses. Specif-

ically, the algorithm performs poorly when some resources are scarce or absent.

The upper curve in Figure 40 illustrates the number of index probes performed

for various experiment instances, on workloads that have half as many licenses

as machines or jobs. When compared to to the lower curve in the same graph

one notes that the inherited weakness of the algorithm in this scenario remains.

However, in order to address the weaknesses of the algorithm (and preserve its

strengths), it is first necessary to understand the algorithm’s behavior in various
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Figure 38: Representative curves of LR’s elapsed time performance.

scenarios.

When both machine and license advertisements are abundant and widely

compatible, the index probe on the machine port of the root will identify several

candidate machines. Due to the abundance of licenses, choosing any one ma-

chine will result in the identification of a valid license when a probe is attempted

on the vacant license port, resulting in a complete gang in just two index probes.

Thus, the algorithm performs well in an environment with abundant resources,

and this suspicion is borne out by the lower curves in Figures 38 and 40. The

algorithm does not suffer when compatible machines are not present either —

the initial index probe on the root’s machine port will result in an empty query

result, immediately resulting in match failure in just one probe.

The weakness of the algorithm is exposed when there are a large number
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Figure 39: Representative number of matches tested by LR.

of compatible machines, but few (or worse, no) licenses. In this case, the first

probe made on the root’s machine port results in a large set of compatible

candidates. An index probe is then issued from the root’s license port for each

candidate machine, but most of these probes are ineffectual because the few

available licenses are only compatible with a small set of machines, which may

not be included in the candidate machine set. Even worse, there may be no

licenses available, in which case all probes issued from the root’s license port

are ineffectual.

Using the notation introduced in the previous section, assuming r roots,

n machines, no licenses and an average machine compatibility of k, the worst

case number of index probes issued is n(1 + k), which in the worst case is

O(n2). While this algorithm is clearly a substantial improvement over the naive
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Figure 40: Representative number of index probes performed by LR.

algorithm, we can in fact do better.

5.5 DYN: Dynamic-Order Gangmatching

5.5.1 Motivation

In the particular license management example, the fixed left-to-right operation

of the indexed gangmatching algorithm defines that the algorithm always pick a

machine first and then find a compatible license for it. If no compatible licenses

are found, another compatible machine is chosen, and the process repeated until

either a compatible machine-license pair is found, or all compatible machines are

exhausted without finding a suitable license. We have seen that this algorithm

performs well if machines and licenses are abundant, or if compatible machines
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are scarce (irrespective of whether licenses are scarce or not). The algorithm

performs poorly when machines are abundant, but licenses are scarce. The

solution to the weakness of the algorithm, of course, is that when faced with

abundant compatible machines and scarce licenses, the algorithm must begin

by picking a license, and then proceed to find a machine compatible with the

license.

While the insight is easily stated, it is not obvious if this strategy is prac-

ticable. First, the inherent left-right bias of the gangmatching model must be

overcome. Second, a mechanism that directs the algorithm to either proceed

left-right or right-left must be developed. The details of these problems and

solutions to them are discussed below.

Overcoming Left-Right Bias

The“declare-before-use” semantics of port labels introduces a natural left-right

bias to the gangmatching model, which, as we have identified, must be overcome.

However, we must first identify exactly what it means to “overcome the left-right

bias.”

Consider the normal left-right matching situation with a docked machine

candidate and vacant license port (Figure 41). The query window that needs

to be created for the license port can be created by the straightforward process of

specializing the port’s attributes and constraints. Specifically, the information

required to find a compatible license is available because the value of the HostID
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Constraint = 
  cpu.Arch=="INTEL"&&
  cpu.OpSys=="LINUX"&&
  cpu.VirtualMemory > ImageSize

Advertisement

Filled port

Parent link

Port under consideration

Label=cpu
ImageSize = 57M;
MemoryReqs = 32M;

Label=job

  Memory - 15M
Constraint = job.MemoryReqs<
Memory = 128M
VirtualMemory = 256M
OpSys = "LINUX"
Arch = "INTEL"
Key = 17

Root Advertisement

HostID = cpu.Key
Label = license

Constraint = license.app=="sim_app"

Figure 41: Left-right gangmatching

attribute in the license port is known.

In contrast, consider Figure 42 which illustrates the dual scenario of a docked

license candidate and a vacant machine port. The query we wish to gener-

ate on the machine port is cpu.Arch=="INTEL" && cpu.OpSys=="LINUX" &&

cpu.VirtualMemory>ImageSize && cpu.Key >= 10 && cpu.Key < 20. How-

ever, the elements required to generate this query are distributed at several loca-

tions: the machine port in the root contains the attributes and constraints that

will determine a large part of the query, the docked license candidate places the

constraint on the HostID attribute which needs to be translated to a constraint

on the Key attribute of the machine, and the license port of the root contains

the information necessary to perform this translation in the HostID attribute

expression.
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Constraint = 
  cpu.Arch=="INTEL"&&
  cpu.OpSys=="LINUX"&&
  cpu.VirtualMemory > ImageSize

Advertisement

Filled port

Parent link

Port under consideration

Label=cpu
ImageSize = 57M;
MemoryReqs = 32M;

Root Advertisement

HostID = cpu.Key
Label = license

Constraint = license.app=="sim_app"

Label=job
App = "sim_app"
Constraint = job.HostID>=10 &&

job.HostID < 20

Figure 42: Right-left gangmatching

The basic challenge of performing right-left gangmatching is constraint shunt-

ing, which is comprised of the following three sub-problems: identifying neces-

sary information, translating information from source locations to be meaningful

in target locations, and collating information into a single window query.

1. Identification. The identification step ensures that all relevant informa-

tion sources are used. Importantly, identification also ensures that irrele-

vant information sources are ignored. For example, if the license port of

a root does not access any information from the machine port, the two

ports are independent, and the complicated process of constraint shunting

would not be necessary. The first step of identification is therefore dis-

covering the dependency relations between the ports of an advertisement.

Inter-port dependencies may be detected by a free variable analysis of all

the expressions present in a port: free variables corresponding to port

names determine inter-port dependencies. For example, the license ports
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of request advertisements are dependent on the machine port due to the

presence of the HostID attribute, which has a free reference to the port

label cpu. Note that these dependence relations are acyclic, since only

“backward” dependencies are possible given declare-before-use semantics.

Thus, when filling the machine port, it is necessary to consider the con-

tents of the license port, which is identified by inverting the dependence

relation.

When attempting to fill a port, it is in general necessary to consider infor-

mation from all ports that are transitively dependent on it. For example,

if port C is dependent on port B, which is in turn dependent on A, it is

possible for constraints defined by the entity docked at C to translate to

a constraint on A. We must consider the contents and docked candidates

(if any) at both B and C when filling A; i.e., all ports in the transitive

closure of the inverse dependent relation.

To summarize the identification step, dependencies between an adver-

tisement’s ports are determined through a free variable analysis. The

transitive closure of the reverse dependency relation is constructed and

consulted when filling ports out of order. The information of interest

from a reverse dependent port exists both in the reverse dependent port

itself, and the candidate docked at that port (if present).

2. Translation. Translation is the process of transcribing information from
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one port so that it is usable in another. It is both interesting and informa-

tive to view translation as a function inversion process. The “translation

attribute” HostID in the license port may be viewed as a function of one

argument, cpu.Key. In this case, the function is simply the identity func-

tion. Constraints issued by the license advertisement, such as job.HostID

>= 10 && job.HostID < 20, may be viewed as applications of the func-

tion HostID which need to be inverted so that they may be applied on

the machine port. Since the function is only the identity function, the

inversion results in cpu.Key >= 10 && cpu.Key < 20.

However, if the attribute instead was HostID = cpu.Key + 10, a more

able translation mechanism can still proceed. In this case the license

constraint job.HostID >= 20 && job.HostID < 30 would be translated

to cpu.Key >= 10 && cpu.Key < 20. In general, the translation step

may be carried out as long as the “translation attribute,” when viewed

as a function, is invertible. (If the translation attribute is not invertible,

the constraint shunting process cannot be performed.) Of course, if the

translation is being performed in a port that is several hops away in the

inverse dependence relation, the inversion functions for each hop must be

composed to determine the final translation.

3. Collation. Information obtained from the various dependent ports must

finally be collated to form a single query. Essentially, each item of infor-

mation being collated is a query fragment, which, as we have noted in
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Section 4.2.2, may be a set of rectangles. Collation of query fragments is

therefore slightly involved: since the constraints of all already filled ports

must be simultaneously satisfied, the final query is a conjunction of these

query fragments, which must itself be expressed as a set of rectangles.1

Alternatively, the index mechanism can be trivially extended to accept

and process logical combinations of independent query windows.

In summary, the collation step involves the conversion of several query

fragments into a single query window (i.e., set of rectangles).

Determining Match Strategy

The motivation for performing right-left gangmatching is based on the intuition

that scarce resources should be incorporated into the gang first. Therefore, the

goal of the strategy mechanism is to detect which of the ports require scarcer

resources. Specifically, the mechanism must detect the number of resource can-

didates for each port, and direct the gangmatching algorithm to fill ports in

increasing order of candidate availability.

This problem is solved by the indexing mechanism. Before attempting to

fill ports of an advertisement, the algorithm first performs a preliminary pass

over the ports, issuing an initial index probe for each port. Initial probes are

generated using the identical mechanisms used to issue regular probes during

1The collation step is analogous to converting the conjunction of several predicates in DNF
to DNF, and therefore (in general) results in a large number of conjuncts in the resulting
DNF expression. Analogously, collation may result in a query window with a large number
of rectangles.
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the fill and refill operations, but some of the information necessary to completely

define the probe may be absent. For example, when issuing the initial probe on

the license port, the HostID attribute would be missing from the query window.

Tolerance of “incomplete” queries is however one of the basic functionalities of

our indexing model, which has been designed to operate in a semi-structured

environment. Since the result of the index probe is a guaranteed superset of the

final answer, the cardinality of the probe result may be used as an upper-bound

estimate of the number of resources compatible with the port. Thus, the port

fill order is determined by sorting ports in ascending order of initial query result

cardinalities.

5.5.2 Algorithm Description

The operation of the indexed dynamic order algorithm is similar to, but more in-

volved than that of the indexed in-order algorithm. The pre-processing phase of

the algorithm includes all the steps of the in-order algorithm: external reference

determination, rectangle conversion, index creation, and rectangle-to-port and

rectangle-to-classad map construction. However, the pre-processing phase of

the dynamic algorithm also includes inter-port dependence analysis (performed

through a free variable identification algorithm) and transitive closure of the

reverse dependence relation. These relations are maintained on per advertise-

ment.

The main operation of the algorithm is also very similar to, but more involved
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than, the in-order algorithm. Before filling the ports of root (or non-root)

advertisements, but after identifying the parent link of a non-root advertisement,

the dynamic algorithm first performs an initial query (or index probe) for each

non-parent link port of the advertisement in question. The ports are then

sorted in increasing order of the query result cardinalities. The algorithm then

performs fill and backtrack ports in the sorted port order. In a sense, the

algorithm still operates in a left-right formalism, except that the orientation of

the algorithm is abstracted to a logical rather than a physical ordering.

When a fill or refill operation is attempted on a port, the translation and

collation mechanisms discussed previously are activated to generate the neces-

sary query window. The history set and query result management strategies

are unchanged from the in-order algorithm.

Finally, the expression evaluation mechanism is invoked when candidates

are incorporated into the gang to ensure that the candidates identified by the

indexing mechanism do in fact satisfy the constraints of the advertisement. The

constraints of all ports (and possible candidates docked at those port) in the

transitively closed reverse dependent relation must be evaluated.

It is important to note that applying different algorithms to the same work-

load can result not only on different gangs being marshaled for the same root,

but also different numbers of successfully marshaled gangs. The first effect is

easily understood given the situation when machines near the beginning in the
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machine port query result are compatible with licenses near the end of the li-

cense port query result. The second effect is a consequence of the first because

matching resource advertisements to gangs has associated opportunity costs. If

request A is compatible with two offers X and Y , whereas request B is only

compatible with X, the advertisement matched to A clearly alters the number

of matches possible. Consequently, the number of matches created by the dy-

namic and in-order algorithms may vary. Nevertheless, the number of matches

never differs by more than 5% of the workload size in the tests presented here.

5.5.3 Performance and Observations

The performance of the DYN algorithm on the base workload is contrasted

with the LR algorithm in Figures 43 and 44 which illustrate the 100% and 50%

scenarios respectively. Representative curves from these graphs are illustrated in

Figure 45 and 46. We note that on the 100% license workloads, the dynamic

algorithm issues more queries than the in-order algorithm. Furthermore, the

number of additional queries issues is within a constant factor of the in-order

algorithm. Since licenses are abundant in this workload, the algorithm almost

invariably performs left-right gangmatching after performing the initial queries.

The difference between the performance of the two algorithms is therefore due

to initial query overhead.

The performance of the algorithm under the 50% license workloads (Fig-

ure 46) shows a dramatic improvement over the indexed in-order algorithm,
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Figure 43: Number of probes issued by DYN and LR on the 100% workload.

confirming our intuitions. The improvement is due to the fact that the algo-

rithm switches between left-right and right-left strategies as appropriate. Thus,

the large number of ineffectual index probes issued by the in-order algorithm

are avoided.

Thus, we see that the dynamic order algorithm performs similarly (within a

small factor), or dramatically outperforms all the other algorithms considered

till now by using a simple heuristic to determine port fill order. As with our

previous experiences, we wish to understand the strengths and weaknesses of

the dynamic order algorithm, so that the reasons for the performance advantage

may be understood.
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Figure 44: Number of probes issued by DYN and LR on the 50% workload.

5.6 The Dynamic Algorithm’s Advantage

The dynamic order algorithm is an adaptive algorithm that modifies its behavior

depending on the nature of the workload. The intuition that drives dynamic

order matchmaking is similar to that which motivates the use of the smaller

relation as the outer relation in a nested-loops join. While in databases the

benefit is realized as fewer I/O operations, the benefit in gangmatching is fewer

index probes.

While it is natural (and essentially correct) to attribute all the performance

gains to the agility of the algorithm, the process of dynamically determining

fill order actually has two beneficial consequences. First, as discussed previ-

ously, scarcer resources are incorporated first, reducing the number of required

index probes. Second, the algorithm immediately aborts if desired resources are
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Figure 45: Representative number of probes issued by DYN and LR on the
100% workload.

unavailable.

The latter property is a consequence of the port order determination step.

Specifically, sorting the port list on initial query result size naturally places

ports with cardinality zero at the head of the list. However, the presence of

ports with zero result cardinality implies the impossibility of a successful match.

Futile match attempts are therefore immediately detected and aborted.

It is instructive to differentiate and isolate these effects to better understand

the reasons for the indicated performance gains. While we certainly do expect

performance contributions from both effects, our goal is to understand the po-

tential magnitude of these contributions, and identify the kinds of workloads in

which these separate effects succeed or fail in comparison to the full dynamic

algorithm. To this end we introduce three variants of previous algorithms.
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Figure 46: Representative number of probes issued by DYN and LR on the 50%
workload.

Fixed right-left algorithm (RL) As the name implies, the algorithm always

starts from the right-most port and proceeds to the left-most port.

Left-right algorithm with Checks (LRC) A modification of the indexed

in-order algorithm (LR), LRC first performs initial queries on all ports

to determine if any of them do not have candidates. If any such ports are

detected, the algorithm immediately aborts. Otherwise, the algorithm

proceeds with the conventional LR algorithm.

Right-left with Checks (RLC) An analogous modification of the RL algo-

rithm, RLC performs initial queries to check candidate availability. Again,

the algorithm proceeds with RL if candidates are available, and aborts im-

mediately if not.
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5.6.1 The RL Algorithm

The performance of the RL algorithm under the base workload is presented in

Figure 47. As anticipated, the RL algorithm’s performance is dual to the per-
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Figure 47: Number of probes issued by the RL algorithm.

formance of the LR algorithm, performing well when LR does poorly and vice

versa. Specifically, the algorithm performs well in the 50% workloads, when

licenses are scarce. However, the algorithm’s performance in the 100% work-

loads is far worse than the performance of LR under the 50% workloads. This

is primarily due to the fact that licenses do not have any attributes to differen-

tiate them — the query result of the root’s license port contains every license.

Thus the cardinality of the first query is always substantially larger in the RL

algorithm than the LR algorithm, amplifying the weakness of the algorithm.
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Nevertheless, the performance of the algorithm under the 50% workloads con-

firms that some of the dynamic algorithm’s advantage is due to the ability of

the algorithm to match right-left when required.

Due to the complementary performance of the LR and RL algorithms, and

the simultaneous and consistent success of the dynamic algorithm in these work-

loads, we can conclude that the agility of the dynamic algorithm is indeed an

important ingredient for its success.

5.6.2 The LRC and RLC Algorithms

The performance of the LRC algorithm is presented in Figure 48, which seems

to indicate that the performance of this algorithms under the base workload is

essentially the same as the dynamic algorithm. In fact, one may be tempted to
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Figure 48: Number of probes issued by the LRC algorithm.
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claim that the complexity of the dynamic algorithm is unwarranted given the

performance competitiveness of the substantially simpler LRC algorithms. In-

tuitively, the LRC algorithm only provides a performance advantage if resources

are completely exhausted. If resources are merely scarce (but not exhausted),

the LRC and RLC algorithms should perform like the LR and RL algorithms

respectively. Thus there must be a “performance cliff” between no resources

and one resource for this algorithm that is not being provoked by the workload.

These intuitions are correct, as indicated by the performance of RLC on

the same base workload (Figure 49). The two sharp discontinuities show the
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Figure 49: Number of probes issued by the RLC algorithm.

presence of the performance cliffs in these experiments.

To further demonstrate this effect, the resource advertisements of the base
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workload were augmented with eight additional advertisements: one advertise-

ment representing a license whose constraints on HostID can never be satisfied

by any machine, and seven advertisements representing machines of various ar-

chitectures, which do not satisfy the constraints of any license. It is important

to note that these “resource dud” advertisements have been engineered so that

any query in the workload, be it on licenses or machines, always returns exactly

one of these advertisements. Thus, the workload ensures that no queries are

empty.

Figures 50 and 51 show that our intuitions are indeed correct — the behavior

of LRC and RLC under the engineered workload are essentially identical to the

LR and RL algorithms. The performance of the dynamic algorithm on the

same workload is shown in Figure 52, showing that the dynamic algorithm’s

performance advantage is not solely dependent on the early detection of futile

matches.

These results are hardly surprising. However, our goal was not to demon-

strate that there exists workloads that can provoke pathological algorithm be-

havior. Instead, we want to emphasize the almost negligible change made to the

base workload which results in this behavior. Thus, although LRC and RLC are

occasionally efficient, their performance is highly sensitive to workload compo-

sition. In practice, the presence of Incompatible resources is almost guaranteed,

rendering these algorithms infeasible.
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Figure 50: Number of probes issued by the LRC algorithm on the specialized
workload.

5.7 Heuristic Failure

In light of the previous performance study one may conclude that the dynamic-

order gangmatching algorithm is superior to the static in-order gangmatching

algorithm. The heuristic of filling ports having fewer candidates first is intuitive

and correct (under our current assumptions), and the algorithm performs well

under various workloads.

Nevertheless, it is reasonable to ask: when is the dynamic algorithm’s heuris-

tic wrong? In other words, when is it incorrect to choose to fill the port with

the smallest number of candidates first? If nothing more about the workload

is known, the dynamic algorithm’s heuristic is always better in the sense that

it minimizes the worst case number of index probes. However, if the workload
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Figure 51: Number of probes issued by the RLC algorithm on the specialized
workload.

has certain special properties, it may be more efficient to ignore the heuristic.

Consider a situation in which there are a 500 compatible machines and 1000

identical licenses, all of which are valid only on the last 100 machines. In other

words, 80% of the machines are not compatible with any license. The dynamic

algorithm’s heuristic is defeated in this case: the heuristic decides to fill the

machine port first, and like the LR algorithm, results in a large number of

ineffectual index probes. In contrast, it is clear that filling the license port first

would result in fewer index probes for the first 500 matches, after which, of

course, performance would sharply degrade.

We can however define an algorithm that performs as well as RL for the

first 500 matches without the subsequent performance degradation on the basis

of the following insight: The identical nature of the 1000 licenses should drive
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Figure 52: Number of probes issued by the dynamic algorithm on the specialized
workload.

us to consider all the 1000 replicas as a single license for algorithmic purposes.

In other words, the heuristic should not base its decision on the number of

rectangles intersecting the query window, but the number of unique rectangles

intersecting the query window. Thus, we propose a variant of the dynamic

algorithm formulated on unique rectangles.
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5.8 DYNS: DYN with Summarization

5.8.1 Algorithm Description

We now augment the dynamic algorithm with a simple summarization algorithm

that places rectangles into “buckets” such that each bucket only contains iden-

tical rectangles. The summarization algorithm works by creating a “signature”

for each rectangle by concatenating representations of the rectangle’s imported

and exported intervals. If a particular interval is absent, a special substring

denoting the interval’s absence is inserted instead of the interval. Representing

deviant components is slightly more complex. We conservatively assume that

no two deviant components are alike, and therefore include unique substrings

in the rectangle’s signature thereby ensuring that the signature is itself unique.

The string signatures of rectangles are used to hash into rectangle buck-

ets in which the rectangles are stored, and therefore only identical rectangles

are placed in the same bucket. Only single rectangle “representatives” from

each bucket are indexed, thereby ensuring that the index only contains unique

rectangles.

The dynamic algorithm then operates as before, with two minor additions.

First, a multi-stage retrieval is performed after a successful index probe: the

first stage translates the index result to a specific bucket, and the second stage

retrieves a specific rectangle from the bucket. (The final mapping from the

rectangle to the advertisement remains unchanged, and proceeds as before.)



167

The second change is that rectangles are purged from the index only when the

rectangle’s corresponding bucket is empty.

5.8.2 Performance and Observations

The performance of the dynamic algorithm with summarization (DYNS) on the

base workload is compared with that of the regular dynamic algorithm (DYN) in

Figures 53 and 54. While the performance of the two algorithms is essentially
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Figure 53: Number of probes issued by DYNS and DYN in the 50% workload

identical for the 50% workloads, we notice that DYNS issues more probes than

the DYN algorithm in the 100% workloads. Furthermore, the number of probes

issued increases with the license selectivity index of the experiment.

The reason for this unintuitive result is that the DYNS algorithm effectively

groups identical licenses for matchmaking by placing them in buckets. The
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Figure 54: Number of probes issued by DYNS and DYN in the 100% workload

algorithm therefore sequentially uses and exhausts identical licenses from each

bucket. However, not all licenses are consumed in the 100% workload, and

license buckets therefore contain a small number of “license dregs” that are left

unused. Since the algorithm proceeds sequentially through the result set for the

license port, these dregs are continually chosen as the license candidate for each

new root, resulting in a large number of ineffectual probes on the machine port.

Furthermore, since these probes are issued for each license bucket, an increased

number of distinct licenses (i.e., larger license selectivity indexes) results in a

correspondingly large number of index probes.
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5.8.3 DYNSR: DYNS with Random Start

The ineffectual probes performed by DYNS can be avoided if sequential con-

sumption of license buckets is prevented. With this goal in mind, we add an

additional modification to the DYNS algorithm — the “random start” — to

yield the DYNSR algorithm. The DYNSR algorithm differs from the DYNS

algorithm only in the manner in which it traverses an index probe’s result set.

While the DYNS algorithm always begins at the top of the set and proceeds

sequentially to the end, the DYNSR algorithm begins at a random starting

position that is chosen uniformly over the size of the result set, and then pro-

ceeds sequentially, “wrapping over” as necessary to traverse the entire set. Thus,

DYNSR avoids the sequential consumption problem by being non-deterministic.

The comparative performance of DYNS and DYNSR on the 100% workload

is presented in Figure 55. The upper four curves in the graph correspond to the

performance of the DYNS algorithm as previously seen, and the lower band of

curves illustrates the performance of the DYNSR algorithm. The graph shows

that as expected, the DYNSR algorithm issues far fewer probes than the DYNS

algorithm.

Unfortunately, the random-start strategy introduces a substantial deficiency

— DYNSR makes 10%–15% fewer matches than either DYN or DYNS on iden-

tical workloads. Figure 56 graphs the number of matches made by the DYN,

DYNS and DYNSR algorithms on a representative workload. While the curves

for DYN, DYNS and DYNSR are co-incident for the 50% workload, DYNSR
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Figure 55: Number of probes issued by DYNSR and DYNS in the 100% work-
load

makes fewer matches in the 100% workload than the other algorithms. The rea-

son for this behavior is subtle. Since the fixed probe result traversal performed

by DYNS is equivalent to a “first fit” strategy, matches on the machine port of

roots get successively “tighter” as the algorithm is run for several roots. By this

we mean that successively matched machine advertisements include just enough

resources to be compatible with the job. In contrast, the random-start strategy

is an “any fit” algorithm that may match machines that have resources far in

excess than those required to satisfy the job. Thus, the random-start strategy

has a higher “opportunity cost” in the sense that the matches made with this

strategy in general prevent more matches from occurring by depriving a larger

number of jobs of their potential matches.

To verify this hypothesis, we constructed a purely bilateral workload (i.e., no
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licenses) in which we only modeled the architecture and operating system pa-

rameters of requests and offers. Each request was assigned a random uniformly

distributed “tag value” between 0 and 10, and each offer included an additional

constraint that required a tag that was above a certain threshold. The threshold

for each offer was obtained by choosing a random value uniformly distributed

between 0 and k, where k is a parameter of the workload that models machine

discrimination. Thus, in general, machines modeled in workloads with higher

discrimination values were compatible with fewer jobs. Workloads with 4000

requests and offers were generated for k = 1, 4, 6, 8, 10.

The experiment proceeded as follows. First, the compatibility set of each

machine in the workload was determined by finding the set of jobs compati-

ble with it. Algorithms with and without the random-start strategy were then
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run on the workloads, and the total opportunity costs of these algorithms were

measured by adding the opportunity cost of each match as each algorithm pro-

gressed. The opportunity cost of each match was determined by subtracting the

set of already matched jobs from the compatibility set of the matched machine,

and taking the cardinality of the resulting set.
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Figure 57: Opportunity cost difference imposed by random start

Figure 57 plots the difference between the opportunity costs of the algo-

rithm that uses the random-start strategy against the algorithm that does not,

for various discrimination values. When the discrimination factor of machines

is low (i.e., for low values of k), the offers are essentially equivalent, so there

are no large opportunity costs incurred when the random-start strategy is em-

ployed. However, as the discrimination factor increases, we see that the random-

start strategy incurs far larger opportunity costs, explaining the behavior of the
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DYNSR algorithm.

5.9 Summary of Gangmatching Algorithms

We have described several gangmatching algorithms in this chapter. The naive

gangmatching algorithm uses the classad expression evaluation mechanism to

identify and confirm matches. The algorithm introduces elements that are used

in all subsequent algorithms such as backtracking, history set management, par-

ent link identification and recursive marshaling. The naive algorithm performs

poorly due to the relative inefficiency of the expression evaluation mechanism,

and the fixed left-to-right strategy used to marshal gangs.

Based on these observations we defined LR, an algorithm that replaces the

expression evaluation mechanism with an index probe to identify compatible

candidates. LR is far more efficient than the naive algorithm, but inherits the

naive algorithm’s weakness when operating in workloads composed of scarce or

absent resources. We therefore formulated a dynamic algorithm (DYN) that

uses the index mechanism to not only identify compatible candidates, but also

to dynamically determine the port fill order. DYN uses a constraint shunting

mechanism to enable right-to-left port filling. The dynamic algorithm minimizes

the worst-case number of index probes by first filling the port that has the fewest

number of match candidates.

DYN’s heuristic is optimal (in the worst-case) if nothing more about the

workload is known. However, the heuristic fails when workloads are composed of
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large numbers of similar or identical advertisements. To rectify this problem, we

formulated DYNS, a variant of DYN that summarizes advertisement rectangles

by collecting identical rectangles in buckets. DYNS makes strategy decisions

using the number of unique rectangles as the criterion, instead of the raw number

of rectangles.

Unfortunately, DYNS issues more queries than DYN on the base workload

due to the grouping of licenses in buckets, leading to sequential consumption

effects. Some license dregs left in each bucket are not compatible with any ma-

chine in the workload, and thus result in a large number of ineffectual index

probes. The DYNSR algorithm attempts to rectify this problem introducing

an element of non-determinism when traversing index probe results. While

DYNSR eliminates the sequential consumption problem of DYNS, it introduces

a new one by its inability to create as many matches as either DYN or DYNS.

This deficiency is due to the fact that DYNSR is essentially an “any-fit” algo-

rithm while DYNS and DYN are “first-fit” algorithms. We have shown that the

“random-start” strategy employed by DYNSR incurs larger match opportunity

costs, and therefore results in fewer matches.

The dynamic algorithms are in general more efficient than their static coun-

terparts, but each algorithm variant (DYN, DYNS, DYNSR) exhibits distinct

strengths and weaknesses. The relative superiority of these algorithms is there-

fore highly sensitive to workload composition.

The trade-offs imposed by the algorithm variants largely exist due to the
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lax match semantics of our current preference-free gangmatching algorithms.

The lack of preferences introduces a degree of freedom that will not exist in

preference-aware schemes. Unconstrained by other external factors, these al-

gorithms make different choices, leading to divergent results. If the choices

available to these algorithms are narrowed by the semantics of the model, the

effects of the above trade-offs will be greatly diminished. Nevertheless, the ef-

fects of these trade-offs cannot be completely eliminated. It would be interesting

to see if algorithms without these shortcomings can be formulated.
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Chapter 6

Conclusions and Future

Directions

The distributed computing community has only recently realized the enormous

capacity and potential of distributively owned resource environments. The in-

creasing prevalence of computational grids and distributed resources in sophis-

ticated federated environments will place high demands on the capabilities of

distributed resource management systems. We believe that matchmaking frame-

works have the potential to play a central role in these environments. In this

chapter we summarize our contributions and identify topics for further research

in the matchmaking area.

6.1 Conclusions and Contributions

Conventional resource management systems are very efficient at managing static

and dedicated resources for high-performance computing, but cannot handle the

complexity and dynamism of distributively owned high-throughput computing
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environments. In this dissertation we have discussed how matchmaking sys-

tems overcome these deficiencies by using an opportunistic scheduling model.

We have identified the architecture, components and protocols that comprise

a matchmaking system and have validated many key issues through practical

design and implementation.

Our contributions to the field of resource management systems include the

classified advertisements language, a powerful and flexible language that may

be used as the language substrate of distributed frameworks. Classads enable

the specification of many interesting and useful resource and customer policies

facilitating the operation of market-like resource federations.

We have developed a complete indexing solution to the classad data model.

Our indexing solution efficiently identifies compatible advertisements by index-

ing both the constraints and attributes of classads. The relative efficiency of the

indexing mechanism and its toleration of semi-structured information enables

it to be used to identify compatible advertisements en masse, and also as an

exploratory aide in making strategic decisions.

Multilateral matchmaking is a substantial contribution of this research ef-

fort. We have developed a symmetric, flexible and expressive declarative model

for aggregating an arbitrary number of advertisements in a single match oper-

ation. The resulting gangmatching mechanism is strictly more powerful than

the previous bilateral matchmaking framework, and can solve many real-world

problems such as license management. We have also defined formal mechanisms
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to express administrative policy through the root identification, root ordering

and docking vector mechanisms, extending the functionality of previous match-

making frameworks.

Finally, we have developed many techniques to solve the gangmatching prob-

lem. Several gangmatching algorithms have been developed, and their behaviors

have been studied in various workloads. By successively addressing the weak-

nesses of these algorithms while maintaining their strengths, we have created a

dynamic algorithm that adapts its match strategy to minimize the cost of mar-

shaling a gang. The algorithm uses several interesting techniques such as ex-

ploratory index probes, expression specialization, constraint shunting and clas-

sad summarization to efficiently identify compatible gangs of advertisements.

These techniques are useful for classad management both in and outside the

matchmaking context, and therefore form the basis of a rich set of classad man-

agement tools.

6.2 Future Directions

Resource management through matchmaking is a relatively new area, and is

therefore rich with many interesting subproblems that require further study. We

identify topics for future matchmaking research in general, and gangmatching

in particular.
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6.2.1 General Matchmaking

Accounting

The emphasis of this body of work has been on matchmaking infrastructure.

Thus, we have developed a framework of components, mechanisms and proto-

cols to enable the construction of robust matchmaking systems. However, we

have not addressed many of the policy issues raised by such frameworks. An

important topic of investigation is accounting for matchmaking systems. Issues

of interest include:

1. How should resource usage be measured in heterogenous environments?

2. How should past usage affect current usage when resources have con-

straints and preferences? What is a “fair” allocation in these environ-

ments?

3. Should resource owners be compensated for services rendered? If so, how?

4. How can different resource management environments create resource shar-

ing agreements?

Advertisement Replacement

Matchmaking currently treats each advertisement as an atomic entity: the re-

source described in an ad is considered to be completely consumed when the ad

is matched. In practice, this is often not the case. For example, a symmetric
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multi-processing computer can usually accommodate several customers simul-

taneously before the resource is deemed to have been consumed. We currently

rely on the resource agent to identify the consumed portion of the resource

when matched, and re-advertise the remaining portion. However, an automatic

mechanism is required to replace a classad with its residual after matching.

Shared Resource Environments

Related to the above problem, the current matchmaking framework treats each

match as an independent activity. However, shared resources such as net-

work bandwidth may prevent subsequent matches from occurring due to over-

subscription of the network caused by earlier matches. The problem, of course,

is the implicit participation and yet lack of representation of network resources

in the matchmaking process. The difficulty of representing network resources

in the matchmaking process is due to the necessity of “side-affecting” network

bandwidth classads appropriately as and when matches are made.

Scalability and Reliability

Our current matchmaking framework can handle resource management envi-

ronments composed of thousands of principals. However, the advent of com-

putational grids realizes the possibility of environments composed of tens of

thousands of resources and hundreds of thousands of jobs. The scalability and

reliability issues of the matchmaking infrastructure must be revisited to address
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the concerns of these large systems.

6.2.2 Gangmatching

The gangmatching model proposed in this dissertation is an extremely flexible

and expressive formalism to represent multiple dependent requests. Although

some aspects of the gangmatching problem have been studied in detail, there

are many interesting and important topics that require further investigation.

Preferences

The gangmatching algorithms presented in this dissertation ignore the problem

of preferences. A substantial problem remaining in gangmatching is the formu-

lation of preference-aware gangmatching algorithms. Although the semantics

of port preferences allows the port rank expressions to be “maximized” inde-

pendently, preference-aware gangmatching algorithms cannot treat ports in the

same independent manner as preference-free algorithms because different port

fill orders will result in different gang compositions. Thus, one may face situa-

tions when an RL strategy would be better, but an LR strategy would be forced

by preference semantics.

Fortunately, many of the mechanisms developed for preference-free algo-

rithms may be adopted. First, a dependence analysis may be performed on the

ports. If the ports are independent, the choice of algorithm will not forced.

Second, if the ports are dependent and, for example, an LR strategy is forced
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even though the RL strategy is recommended and if the number of distinct can-

didate rectangles for the right port is relatively small, the entire set of candidate

rectangles may be used as a query window to filter the candidates of the left

port. Matchmaking may then proceed with the LR algorithm. This technique

provides the advantages of the RL algorithm without actually performing an

RL match, albeit with additional overhead. Of course, other techniques would

have to be developed for situations in which the number of candidate rectangles

is large.

Support for Wider and Deeper Gangs

The gangmatching algorithms have been created for and tested on problems

requiring small gangs. However, there are many additional techniques and al-

gorithms which may be developed to marshal larger gangs. For example, in

the context of the license management problem, the gangmatching algorithm

always ensures that at any instant, the current partial gang being processed

is consistent in the sense that, to the best of the matchmaker’s knowledge, all

the current gang members are compatible with each other. Unfortunately, the

dynamic algorithm does not have this property for larger gangs.

Consider an example in which a job requires a machine and two licenses,

which indirectly constrain the machine in the usual way. Assume that the right-

most license port is filled first. and the license places the constraint job.HostID

> 10. Now assume that the remaining license port is filled, and the candidate
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license places the constraint job.HostID < 5. It is obvious that the two licenses

are incompatible. However, the dynamic algorithm cannot detect this condition

because the dependency between the two ports is indirect — the license ports

are both dependent on the cpu port. Thus, detecting this dependence takes two

hops in the inter-port dependency graph.

In the terminology of constraint programming, the current dynamic algo-

rithm implements node consistency and arc consistency [21]. What is required

therefore is a mechanism to implement path consistency. The ingredients to

implement this mechanism are all present: the dependency relation is already

maintained for each advertisement and the indexing code may be used to deter-

mine consistency through its type and value consistency checks. The distributed

information in the partial gang must be aggregated to form the appropriate win-

dow query to ensure that only completely consistent gangs are marshaled.

Bottom-Up Gangmatching Algorithms

The use of bottom-strategies is an intriguing possibility for gangmatching algo-

rithms. Since all the proposed algorithms are top-down, they inherit the general

weaknesses of top-down algorithms, including the possibility of exponential be-

havior on some workloads. For example, if a job requested six machines via six

ports, but only five machines are available, all of the proposed algorithms would

attempt the 5! machine permutations before failing to satisfy the match. The

use of bottom-up algorithms and the implications of these strategies on the rest
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of the framework needs investigation.

Generalized AND/OR port relationships

The current gangmatching formalism requires all the ports of an advertise-

ment to be satisfied for the advertisement to be considered matched. Thus, the

model only supports the AND multi-resource allocation paradigm — there is

no functionality to specify more complex relationships between the ports of the

advertisement. The most flexible scheme would be a formalism that allows a

hierarchical method of grouping ports, where each level of the hierarchy states

the minimum number and maximum number of entries that are required to be

satisfied. The generality of this scheme is very attractive, but it also introduces

many difficulties. Issues such as label naming, label semantics, search strategies

and preferences must all be reformulated to this more general formulation.

Gangmatching for other problems

We have approached the gangmatching problem with a strong goal-directed

philosophy of solving the license management problem. However, as mentioned

in Chapter 3, the gangmatching model is extremely flexible and capable of some

very intriguing functionality. It would be interesting to apply the gangmatching

formalism to other problems such as the management of abstract services and

distributed access control.
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Diagnostics

A significant problem currently faced in our framework is explaining the behav-

ior of the matchmaking process to software agents, human users and system

administrators. The matchmaking process currently behaves like a black-box,

with little indication why certain classads are matched with other particular

classads or why some classads never find matches. The reasons for such out-

comes are complex and depend not only on the contents of the classad in ques-

tion, but all candidate match classads which collectively determine the “state”

of the system. Although work is currently underway to provide diagnostic ser-

vices to human users for the bilateral case, it would be interesting to provide

these services for gangmatching as well. In addition to assisting human users

in comprehending policies, diagnostic functionality in gangmatching would en-

able dependency directed backtracking strategies instead of the naive temporal

backtracking strategy currently used.
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Appendix A

ClassAd Language: Built-in

Functions

The classad language provides a rich set of built-in functions. User-defined

functions may not be defined. However, additional functions may easily be

added if access to the library source code is available. The syntax of a function

call is

name(arg0, arg1, . . . , argn)

As with operators, most functions are strict with respect to undefined and

error on all arguments. However, some functions are non-strict, and these

exceptions are noted. The name of the function is not case-sensitive.

A.1 Type predicates (Non-Strict)

IsUndefined(V) True iff V is the undefined value.

IsError(V) True iff V is the error value.

IsString(V) True iff V is a string value.

IsList(V) True iff V is a list value.
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IsClassad(V) True iff V is a classad value.

IsBoolean(V) True iff V is a boolean value.

IsAbsTime(V) True iff V is an absolute time value.

IsRelTime(V) True iff V is a relative time value.

A.2 List Membership

Member(V,L) True iff scalar value V is a member of the list L.

IsMember(V,L) Like Member, but uses is for comparison instead of ==.

Not strict on first argument.

A.3 Time Queries

CurrentTime() Get current time (absolute time)

TimeZoneOffset() Get time zone offset as a relative time

DayTime() Get current time as relative time since midnight.
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A.4 Time Construction

MakeDate(M,D,Y) Create an absolute time value of midnight for the given

day. M can be either numeric or string (e.g., ”jan”).

MakeAbsTime(N) Convert numeric value N into an absolute time (number

of seconds past UNIX epoch).

MakeRelTime(N) Convert numeric value N into a relative time (number of

seconds in interval).

A.5 Absolute Time Component Extraction

GetYear(A) Get integer year.

GetMonth(A) 0 = jan, . . . , 11 = dec

GetDayOfYear(A) 0 . . . 365 (for leap year)

GetDayOfMonth(A) 1 . . . 31

GetDayOfWeek(A) 0 . . . 6

GetHours(A) 0 . . . 23

GetMinutes(A) 0 . . . 59

GetSeconds(A) 0 . . . 61 (for leap seconds)



196

A.6 Relative Time Component Extraction

GetDays(R) Get days component in the interval

GetHours(R) 0 ... 23

GetHours(R) 0 . . . 23

GetMinutes(R) 0 . . . 59

GetSeconds(R) 0 . . . 59

A.7 Time Conversion

InDays(T) Convert time value into number of days

InHours(T) Convert time value into number of hours

InMinutes(T) Convert time value into number of minutes

InSeconds(T) Convert time value into number of seconds

A.8 String Functions

StrCat(V1, . . . , Vn) Concatenates string representations of values V1 through

Vn

ToUpper(S) Upcases string S

ToLower(S) Downcases string S
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SubStr(S,offset [,len]) Returns substring of S. Negative offsets and lengths count

from the end of the string.

RegExp(P,S) Checks if S matches pattern P (both args must be

strings). See regexec(3C) for details on patterns.

A.9 Type Conversion Functions

Int(V) Converts V to an integer. Time values are converted to

number of seconds, strings are parsed, bools are mapped

to 0 or 1. Other values result in error

Real(V) Similar to Int(V), but to a real value.

String(V) Converts V to its string representation

Bool(V) Converts V to a boolean value. Empty strings, and zero

values converted to false; non-empty strings and non-

zero values converted to true.

AbsTime(V) Converts V to an absolute time. Numeric values treated

as seconds past UNIX epoch, strings parsed as necessary.

RelTime(V) Converts V to an relative time. Numeric values treated

as number of seconds, strings parsed as necessary.



198

A.10 Mathematical Functions

Floor(N) Floor of numeric value N

Ceil(N) Ceiling of numeric value N

Round(N) Rounded value of numeric value N


