
Management of Grid Jobs and Data within SAMGrid

Andrew Baranovski, Gabriele Garzoglio, Igor Terekhov
Fermi National Accelerator Laboratory

Batavia, IL 60510 USA

Alain Roy, Todd Tannenbaum
Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI 53706 USA

Abstract

When designing SAMGrid, a project for distributing
high-energy physics computations on a grid, we discov-
ered that it was challenging to decide where to place user’s
jobs. Jobs typically need to access hundreds of files, and
each site has a different subset of the files. Our data sys-
tem SAM knows what portion of a user’s data may be at
each site, but does not know how to submit grid jobs. Our
job submission system Condor-G knows how to submit grid
jobs, but originally it required users to choose grid sites and
gave them no assistance in choosing. This paper describes
how we enhanced Condor-G to interact with SAM to make
good decisions about where jobs should be executed, and
thereby improve the performance of grid jobs that access
large amounts of data. All these enhancements are general
enough to be applicable to grid computing beyond the data-
intensive computing with SAMGrid.1

Keywords. SAMGrid, Condor-G, SAM, D0, grid com-
puting, planning, middleware, data management, schedul-
ing, data intensive computing.

1 Introduction

A key area in grid computing [6, 7] is job management,
which typically includes planning a job’s dependencies, se-
lection of a cluster to execute the job, scheduling of the
job at the cluster and ensuring reliable submission and ex-
ecution. If data is partially replicated at different clusters,
choosing the cluster where the job will run may have a large
impact on the performance of the job, because a cluster with
more of the necessary data will need to transfer less data in
order for the job to run. In High Energy Physics (HEP) com-
puting, which remains a principal application domain for
grids as a whole, jobs aredata intensiveand thereforedata
handlingis one of the most important factors. For HEP ex-

1Published inThe 2004 IEEE International Conference on Cluster
Computing, San Diego, CA, Sept 20-23 2004, pages 353- 360.

periments such as D0 and CDF, data handling is the center
of the grid system [19].

In this paper, we present results of a collaboration be-
tween the Condor and SAMGrid teams to develop a grid
job system which uses a grid data handling system to assist
in scheduling data-intensive jobs so as to achieve good per-
formance. Our job management is based on Condor-G [9]
and our data handling system uses SAM [4].

Condor-G is a is a fault-tolerant job submission system
that can access computing resources via the Globus Re-
source Allocation Manager (GRAM) protocol. [1] GRAM
is an attractive grid protocol for job submission because it
is secure, uniform and can interact with a variety of under-
lying batch systems. However, GRAM does not provide
a user-friendly interface and it is not a reliable protocol.
Condor-G builds on top of GRAM and provides reliability,
error recovery, monitoring, and a user-friendly interface to
GRAM.

The SAM data handling system [17] has been devel-
oped at Fermilab over the last five years, for use primar-
ily by the D0 and CDF HEP experiments. It is a globally
distributed system, one of the first functioning data grids,
which uses a centralized meta-data catalog and a fully dis-
tributed network of processingstations, each including a
suite of servers. The system provides services for data
provenance tracking, global on-demand data replication and
routing among multiple storage systems, as well as coordi-
nation of access to various storage systems and other collec-
tive services. Presently, SAM is a production system serv-
ing petabyte-scale data to hundreds of D0 and CDF physi-
cists scattered across dozens of institutions worldwide.

In the course of our collaboration between Condor-G and
SAM, we designed and implemented mechanisms to allow
Condor-G to interact with SAM to make good decisions
about where to place jobs so that the least amount of data is
transferred before the job can run, and therefore the job can
complete more quickly. These improvements to Condor-G
are used by the Jobs and Information Management (JIM)
portion of the SAMGrid [10] application project whose pri-
mary purpose is to augment the SAM grid handling system

with job and information management services.
The rest of the paper is organized as follows. We dis-

cuss the relevant Condor-G enhancements in Section 2. We
discuss the application of these technologies, the foremost
being the interface of the job management with the data
handling system, in Section 3. We discuss possible future
research work in Section 4 and conclude in Section 5.

2 Condor-G Enhancements

For clients that desire access to grid resources accessible
via GRAM, Condor-G represents a significant advance over
the tools provided with the Globus toolkit. By providing
client-side persistent state, durable distributed transactions,
and network and end-point fault-tolerance, Condor-G works
to prevent the loss or repetition of jobs [9].

But despite the benefits, Condor-G possessed limitations
that stood in the way of our design goals for SAMGrid.
Specifically, Condor-G required the user to specify at job
submission time which grid site should run the job (or re-
quired this information indirectly, in the case of GlideIn[9]).
That is, Condor-G did not aid users in selecting appropriate
grid resources, and was not able to take advantage of the
matchmaking framework from Condor [12] to select grid
sites.

In addition, Condor-G lacked an appropriate mechanism
to interface with the data placement knowledge and infor-
mation contained within the SAM data handling system.
This mechanism was essential so Condor-G could enrich
job management decisions based upon an awareness of data
placement in the grid.

In order to remove these limitations, we introduced sev-
eral enhancements to Condor-G. In particular, we added
matchmaking that allows Condor-G to select grid resources
and we provided a mechanism for Condor-G to access in-
formation that is not easily advertised in a directory service.

2.1 Grid Matchmaking in Condor-G

Our first change was to introduceplanning into
Condor-G to automatically select the execution site for
users. Planning is the process by which a client attempts
to map logical requests onto physical resources, taking into
consideration that these physical resourcesare not under the
control of the client. To better understand planning, con-
sider the analogy of an airline traveler. A traveler does not
perform scheduling in the traditional sense, because he does
not exert any direct control over the resources. The deci-
sions about when and where the airplanes fly is left up to
the resource owners, in this case the airlines. But a traveler
usually can still identify a path from point A to point B in a
manner mindful of independent constraints and preferences,

even if no single airline has even identified the demand for
travel along that path.

Several grid planners are under development. For exam-
ple, the Chimera Virtual Data System [8] from the Univer-
sity of Chicago contains a mechanism to plan how to gener-
ate a logical file in the form of an abstract program execu-
tion graph. These abstract graphs are then turned into an ex-
ecutable DAG for the Condor DAGman [2] meta-scheduler
by the Pegasus planner, which then can create the physi-
cal file that corresponds to the logical file. Pegasus is a
grid planner developed by the Information Sciences Insti-
tute (ISI) at the University of Southern California [3].

For SAMGrid, we opted to enhance Condor-G with a
planner designed around the ClassAd matchmaking frame-
work [14]. In the subsequent sections we will show how
this approach to planning meets the challenges outlined in
Section 2 above. Other projects, such as the EU Datagrid
[5], have also utilized matchmaking to perform planning
with success. Since it is implementedwithin the Condor
framework, the SAMGrid planner has several unique fea-
tures, such as:

• flexibility of resource description, due to theabsence
of a fixed schema, and

• dramatically reduced need for an application-specific
layer above the standard Condor layer in planning.

Before we proceed with the description of our enhance-
ments, we give an overview of Condor’s ClassAds and plan-
ning below. A reader who is familiar with Condor can skip
to Section 2.1.2.

2.1.1 The Basics of ClassAd Matching

A ClassAd is a set of uniquely named expressions, using
a semi-structured data model so no specific schema is re-
quired. Each named expression is called anattribute. Each
attribute has anattribute nameand anattribute value. In our
initial ClassAd implementation, the attribute value could
be a simple integer, string, floating point value, or expres-
sion comprised of arithmetic and logical operators. A sub-
sequent implementation introduced richer attribute value
types and related operators for records, sets, and tertiary
conditional operators similar to the C programming lan-
guage. Figure 1 portrays an example of a simple ClassAd
that could describe a cluster. In practice, ClassAds contain
many more attributes.

The planner assigns significance to two special at-
tributes: Requirements and Rank. Requirements
indicates a constraint andRank measures the desirability
of a match. During evaluation, the scoping prefixother
refers to the candidate matching ClassAd, and thus in Fig-
ure 1,other.Name represents the name attribute within a
job ClassAd.

[
Type = "GridSite";
Name = "FermiComputeCluster";
Gatekeeper = "globus.fnal.gov/lsf";
Load = [

QueuedJobs = 540;
RunningJobs = 200;

];
Requirements = (other.Type == "Job"

&& Load.QueuedJobs < 100);
GoodPeople = { "howard", "harry" };
Rank = member(other.Name,

GoodPeople) * 500
]

Figure 1. Example of a ClassAd that could
represent a compute cluster in a grid.

The matchmaking algorithm requires that for two
ClassAds to match, both of their corresponding
Requirements must evaluate totrue . The Rank
attribute should evaluate to an arbitrary floating point num-
ber. Rank is used to choose among compatible matches:
Among provider ads matching a given customer ad, the
planner chooses the one for which the customer ad has the
highest Rank value (noninteger values are treated as zero),
breaking ties according to the provider’s Rank value of the
customer ad.

Interested readers can refer to [14] for more information
about ClassAds and matchmaking.

2.1.2 Matchmaking Planner Operation

The following steps are performed by the planner and de-
picted in Figure 2:

1. In the first step, Condor-G submission agents ad-
vertise job characteristics and requirements, and grid
resources advertise their characteristics and require-
ments to the planner via ClassAds. This advertisement
is performed periodically as a push model.

2. In the second step, the planner, also known as the
matchmaker, scans the known ClassAds and creates
pairs that satisfy each other’s constraints and prefer-
ences.

3. In the third step, the planner informs the Condor-G
submission agent of the match. At this point,
Condor-G receives a copy of the resource ClassAd that
has been matched to a specific job ClassAd. Condor-G
then augments, or even changes, the attributes in the
job ClassAd based upon information discovered in its

matching resource ClassAd. In particular, the grid site
that was chosen for the job is added to the ClassAd.

4. In the final step, Condor-G sends the job via the
GRAM protocol to the grid resource now specified in
the augmented job ClassAd.

2.2 Externally Supplied Function Evaluation in
ClassAds Enhancement

ClassAds are an excellent data representation because
they are both expressive enough to be useful but simple
enough to be amenable to analysis. This simplicity has
some drawbacks because users are unable to express arbi-
trary programs within ClassAds. For instance, users would
find it very hard for a job ClassAd to state “I have the fol-
lowing filesx1 ... x300 and I need to match with a resource
whose list of files has the greatest overlap with my list of
files.” Not only is very unwieldy for users to specify, but it
is likely to be information that is known elsewhere in a data
handling system. Similarly, system administrators may not
wish to publish information such as which users are allowed
to access a system, but users may wish to select a system
that they have access to.

While special-purpose hacks could be added to discover
these sorts of information, these would not solve the gen-
eral problem of accessing information that is not easily ex-
pressible in a directory service. Therefore, we have added
the ability for users to write functions in another language
that can be used in ClassAd expressions. These functions
are evaluated at match time. This allows the matchmaker to
base its decision not only on explicitly advertised properties
but also on opaque logic that is not statically expressible in
a ClassAd. Other uses include incorporation of information
that is prohibitively expensive to publish in a ClassAd, such
as local storage contents or lists of authorized users.

We show an example of such a user-defined function in
Section 3.1. Adding such user-defined functions creates
an interesting difficulty: as soon as functions are available
for users to define, they are likely to do time-consuming
computations, such as contacting remote databases to look
up data needed for their calculations. Such operations can
greatly slow down matchmaking. To some extent, this
can be ameliorated by doing caching of the results of the
functions, but this presents more complications: how long
should the data be cached for? How do users interact with
the cache? Should all functions be cached? We have solved
this problem in our current implementation by implement-
ing caching within the user-defined function, and we are
investigating more general solutions.

The ability to call a user-defined function that can be
used to decide which resource should be used is a signifi-
cant enhancement to the matchmaking in Condor-G. It al-
lows users to have more expressive requirements for their

Matchmaking Algorithm (2)

ResourceAgent
Noti

fic
ati

on
 (3

)

Adv
ert

ise
men

t (
1)

Claiming (4)

Advertisement (1)

Matchmaker

Figure 2. Matchmaking on the Grid

matches, and provides them with much greater control than
they previously had.

2.3 Multi-tiered Architecture

In the past, Condor-G and the Globus Toolkit required
that users submit their grid jobs from a computer that would
remain available until the job has finished executing. This
is inconvenient since many scientists would like to submit
their jobs from laptops, or because their jobs may run long
enough that they risk losing their connection to the grid dur-
ing their jobs’ execution.

Condor-G was extended to allow the jobs to be submit-
ted to a second-tier machine that is more likely to remain
available while the jobs are running. Users’ jobs will be
monitored and cared for on another computer, and they can
return after a time, perhaps days, and retrieve the results.

3 Application to the SAMGrid

In this section, we discuss the materialization of our
ideas in the grid Jobs and Information Management (JIM)
part of the SAMGrid project. Figure 3 shows the principal
job management architecture in our project. One interest-
ing aspect of the design, discussed in Section 3.1, is that
in addition to using the published information, the match-
making service queries the resource providers, by means of
evaluating the externally supplied function as described in
Section 2.1.1.

3.1 Combination of the Advertised and Queried
Information in the planner

The original matchmaking service gathered information
about the resources in the form of ClassAds that completely
described the available resources. This allows for a general

and flexible framework for resource management such as
matching jobs and computers, see [14]. This framework has
been successfully implemented in the Condor batch system
and has found other interesting uses, such as Hawkeye [11].
As described above, there is one limitation in that scheme,
however, which is that the entities (jobs and resources) have
to be able to express all their relevant properties in advance
and cannot tailor the information to specific resources that
they may be matched with.

Recall that our primary goal was to enable co-scheduling
of jobs and data. In data-intensive computing, jobs are as-
sociated with long lists of data items (such as files) to be
processed by the job. Similarly, resources are associated
with long lists of data items located, in the network sense,
near them. For example, jobs requesting thousands of files
and sites having hundreds of thousands of files are not un-
common in production in the SAM system. Therefore, it
would not be scalable to explicitly publish all the properties
of jobs and resources in the ClassAds.

There are other examples of this sort of information that
could not be included in a ClassAd prior to the work pre-
sented herein:

• A site may not want to advertise who is authorized to
run jobs at the site, but the planner should not choose a
site that the user is not authorized at. In simple sit-
uations, users can restrict the sites that are eligible,
but this requires users to track and update them cor-
rectly. It may be more convenient for the matchmaker
to check during matchmaking if the user is authorized.

• A site may prefer a job based that has similar data han-
dling requests to jobs already scheduled at that site.
Unlike the information about data already placed at
sites, the information about scheduled data requests
and their estimated time of completion is not described
by any popular concept like replica catalogs.

Submission
Client

Matchmaking
Service

Matchmaker

Queuing
System

Data
Handling
System

Grid
Sensors

1

2

3

4

5

Info Collector

Execution Site

Execution
Sites

Storage
Elements

Computing
Elements

Figure 3. SAMGrid’s job management architecture. 1. Jobs are submitted to the job queue. 2. Job
description is given to the matchmaker, which begins matching based on information from the grid
sensors. 3. Matchmaker contacts the data handling system while matching. 4. Matchmaker provides
the match to the queuing system. 5. The job is submitted across the grid to the execution site.

In the SAMGrid design, we use the previously described
user-defined functions to allow the planner to access infor-
mation available in SAM about data. This is pictured in
Figure 3 by arrows extending from the matchmaker to the
local data handling systems, in the course of matching. It is
implemented by means of externally supplied ranking func-
tions. That is, users do not require a site to have a specific
amount of their data on hand, but instead rank the sites by
how much data is available, and the site with the most data
is chosen. Specifically, the resource ClassAds in our design
contain pointers to additional information providers (data
handling servers called stations): as an example, the follow-
ing is a resource ClassAd used in SAMGrid. The ClassAd is
labeled “Machine” instead of “GridSite” for historical rea-
sons.

[
MyType = "Machine";
TargetType = "Job";
Software_CAF = "Installed";
site = "UToronto";
schema = "v0_8";
SamStationName = "cdf-toronto";
SamStationUniverse = "prd";
SamStationExperiment = "cdf";
Name = "cdf-toronto.cdf.prd";
architecture = "Linux+2.4";
gatekeeper_url = "XXXXX:2119/jobmanager";
nameservice = "IOR:000...44c3a...6500";

]

This is matched with the job ClassAd:

[
MyType = "Job";
TargetType = "Machine";
Rank = sam_rank_data_overlap(

other.SamStationName,
"jbot0h-361404",
other.nameservice);

Requirements =
(other.Software_CAF isnt Undefined
&& TARGET.SamStationUniverse=="prd"
&& TARGET.SamStationExperiment=="cdf");

GlobusResource = "$$(gatekeeper_url)";
Cmd = ...
Args = ...

]

Note that the Rank expression invokes a user-defined
function,sam rank data overlap . This function will
provide the amount of overlap between the user’s data set
and the files available at the grid site as a percentage. Be-
cause it is used in the Rank expression, jobs will prefer sites
that have a greater percentage of the data that is needed,
but do not require a site to have any of the data. This user-
defined function includes logic similar to this pseudo-code:

station = resolve(Station_ID,...)
return station->get_preference(

job_dataset,...)

Design of other ClassAd functions is underway in the
SAMGrid project.

3.2 Interfacing with the SAM Data Handling Sys-
tem

The co-scheduling of jobs and data has always been crit-
ical for the SAM system, where at least a subset of HEP
analysis jobs (as of the time of writing, the dominant class)
have their latencies dominated by data access. Note that the
SAM system has already implemented the advanced feature
of retrieving multi-file datasets asynchronously with respect
to the user jobs [20, 18]—this was done initially at the clus-
ter level rather than at the grid level, see also Section 4.

For jobs that are data-intensive, we attempt to minimize
the time to retrieve any missing data and the time to store
output data, as these times propagate into the job’s overall
latency. In order to minimize the grid job latency, we take
the data handling latencies into account in the process of job
matching. This is a principal point of this paper, and while
we do not yet possess sufficient real statistics that would
verify our design decisions, we stress that our system design
enables the various strategies and supports considerations
listed below.

In our initial implementation, we prefer sites that contain
most of the job’s data. Our design does not rely on a replica
catalogue because in the general case, we needlocal metrics
computed by and available from the data handling system:

• The network speeds for connections to the sources of
any missing data;

• The depths of the queues of data requests for both input
and output;

• The network speeds for connections to the nearest des-
tination of the output files2

It is important that network speeds be provided by a high-
level service in the data handling rather than by a low-level
network sensor, for the same reason that having a 56Kbps
connection to an ISP does not necessarily allow one to
download files from the Internet at that speed.

We realize that in general, minimization of data handling
latencies in job scheduling is insufficient and not always op-
timal. Data transfers may need to be explicitly scheduled
in addition to jobs; see [15, 16] and references therein for
some of the most interesting relevant work. The work of
[16] has adopted a model with assumptions about file pop-
ularity distributions and where the jobs have single files as
input. The work has shown by model-based simulations that
sending the job to its data is not always best, due to the un-
even growing of local schedulers’ queues.

2In the SAM system the concept of data routing is implemented such
that the first transfer of an output file is seldom done directly to the final
destination.

4 Project Status and Future Work

In our first implementation of the job management in
SAMGrid, we rank jobs by the amount of job’s data cached
at the sites (with rudimentary load-balancing based on ran-
domization). The implementation of this first ranking func-
tion caches values of the known datasets for efficiency. We
have deployed this system currently at 11 sites, which is a
reasonable fraction of the SAM production system deploy-
ment. We have successfully submitted and brokered real
user analysis jobs from CDF and D0 physicists, based on
the logic described above.

Our Supercomputing 2002 demonstration was one of
the first demos involving physics analysis on a grid. Two
physicists from CDF have analyzed tens of gigabytes of
real data3 using a grid of 5 CDF sites: Fermilab (Illi-
nois), University of Toronto (Canada), Rutgers (New Jer-
sey), Rutherford Appleton Laboratory (UK), Kyungpook
University (South Korea).

Referring to Figure 3, the user submits his job and spec-
ifies parameters like the dataset name, the full path to the
directory containing the executable and other files. The job
description is then translated into a ClassAd and submit-
ted to the queuing system (step 1), which then sends the
description of the job to the matchmaker (step 2). The ex-
ecution sites advertise their resources to the matchmaking
service by using the grid sensors. Section 3.1 shows job and
resource description ClassAds used during the demo. The
matchmaker considers each resource in turn, and queries
the data handling system for information about the users
data (step 3). The matchmaker communicates to the queu-
ing system the best grid site(step 4) and the job is then sub-
mitted across the grid to be execute (step 5).

At the time of writing, we are deploying elements of
SAMGrid onto other sites; more information will be avail-
able by the time of the Conference. Recall that the SAM-
Grid system will place terabyte scale jobs onto a grid con-
sisting of dozens of sites. The Fermilab RunII experi-
ments are expected to accumulate petabyte scale data within
the next few years, likely before future HEP accelerators
such as the CERN LHC turn on. The SAMGrid environ-
ment therefore gives us unique opportunities for the data-
intensive job scheduling studies. What we have designed in
the project and presented in this paper is adesign framework
for an organic integration of the job and data management,
where the Condor-G planner will use a series of ranking
functions of various complexity so as to make intelligent
decisions based on the maximum of useful information, pri-
marily from the data handling system (SAM). We plan re-
search work in determining what information is most rele-

3The goal of the analysis was to determine the mass and the width of
the J/Psi particle decaying in two muons and it served as a sanity check of
the detector.

vant for these purposes, some ideas having been stated in
Section 3.2. We plan to conduct experimental studies of the
efficiencies of our scheduling strategies based on real sys-
tem experience, including validation of and improvement
on the model-based findings in [16].

For Condor-G, the main features that are working on are:

• Distributed, and possibly hierarchical, matchmakers;

• Updating resource ClassAds after matching in order to
reflect changes that have occurred. For instance, a grid
site may advertise the number of free nodes it has, and
a match should reduce that number.

5 Summary

We have presented the design of a grid system to man-
age jobs and data, using the enhanced Condor-G technol-
ogy for job management and SAM as the data handling sys-
tem. We have dramatically improved Condor-G in several
ways; most notably, we added matchmaking capabilities to
select grid sites, and allowed user-defined ranking functions
in matchmaking. We have used the new Condor-G to create
a design framework for inclusion of data handling metrics
into the matchmaker for better scheduling of data-intensive
jobs, and have applied it to the SAM data handling sys-
tem, in the framework of SAMGrid’s Jobs and Information
Management (JIM). Initially, our grid request broker prefers
sites with most data cached, with more considerations being
explored. Our work is implemented in real production sys-
tem managing High Energy Physics analysis jobs and data.

6 Acknowledgements

This work is sponsored in part by DOE contract No. DE-
AC02-76CH03000. Our collaboration takes place as part of
the DOC Particle Physics Data Grid (PPDG), [13] Collab-
oratory SciDAC project. We would also like to express our
gratitude for fruitful discussions with the members of the
SAM and Condor teams.

References

[1] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A resource management ar-
chitecture for metacomputing systems. InProceedings of
the IPPS/SPDP Workshop on Job Scheduling Strategies for
Parallel Processing, pages 62–82, 1988.

[2] DAGMan, the directed acyclic graph manager.http://
www.cs.wisc.edu/condor/dagman ,.

[3] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Pegasus:
Planning for execution in grids. Technical Report 2002-20,
GriPhyN, Dec. 2002.

[4] I. T. et al. Distributed data access and resource management
in the D0 SAM System. InProceedings of the 10th Interna-
tional Symposium on High Performance Distributed Com-
puting (HPDC-10), San Francisco, CA, July 2001. IEEE
Computer Society Press.

[5] The European Union DataGrid Project.http://www.
eu-datagrid.org .

[6] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann, 1998.

[7] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations.Inter-
national Journal of High Performance Computing Applica-
tions, 15(3):200–222, 2001.

[8] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying and automat-
ing data derivation. InProceedings of Global and Peer-to-
Peer Computing on Large Scale Distributed Systems Work-
shop, May 1995.

[9] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional grids.Cluster Computing, 5:237–246, 2002.

[10] G. Garzoglio. The SAM-GRID Project: Architecture and
plans. InProceedings of the VIII International Workshop on
Advanced Computing and Analysis Techniques in Physics
Research (ACAT 2002), June 2002.

[11] HawkEye: A monitoring tool for distributed systems.
http://www.cs.wisc.edu/condor/hawkeye .

[12] M. Livny and R. Raman. High-throughput resource man-
agement. In I. Foster and C. Kesselman, editors,The
Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, 1998.

[13] Particle Physics Data Grid (PPDG).http://www.ppdg.
net , August 2002.

[14] R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed resource management for high throughput com-
puting. In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing
(HPDC7), Chicago, IL, July 1998.

[15] K. Ranganathan and I. Foster. Decoupling computation and
data scheduling in distributed data intensive applications.
In Proceedings of the 11th IEEE Symposium on High Per-
formance Distributed Computing (HPDC-11), Edinburgh,
Scotland, July 2002.

[16] K. Ranganathan and I. Foster. Simulation studies of compu-
tation and data scheduling algorithms for data grids.Journal
of Grid Computing, 1(1):53–62, 2003.

[17] SAM. http://runiicomputing.fnal.gov/sam .
[18] I. Terekhov. Distributed processing and analysis of physics

data in the dzero sam system at fermilab. Technical Report
Fermilab-TM-2156, Fermi National Laboratory, Aug. 2001.

[19] I. Terekhov. Meta-computing at D0 (plenary talk). InPro-
ceedings of the VIII International Workshop on Advanced
Computing and Analysis Techniques in Physics Research
(ACAT 2002), June 2002.

[20] I. Terekhov and V. White. Distributed data access in the se-
quential access model in the D0 Run II data handling at Fer-
milab. InProceedings of the 9th IEEE Symposium on High
Performance Distributed Computing (HPDC9), Pittsburgh,
PA, August 2000.

