
Stork: Making Data Placement a First Class Citizen in the Grid

Tevfik Kosar and Miron Livny
Computer Sciences Department, University of Wisconsin-Madison

1210 West Dayton Street, Madison WI 53706
{kosart, miron}@cs.wisc.edu

Abstract

Todays scientific applications have huge data require-
ments which continue to increase drastically every year.
These data are generally accessed by many users from all
across the globe. This implies a major necessity to move
huge amounts of data around wide area networks to com-
plete the computation cycle, which brings with it the prob-
lem of efficient and reliable data placement. The current
approach to solve this problem of data placement is either
doing it manually, or employing simple scripts which do not
have any automation or fault tolerance capabilities. Our
goal is to make data placement activities first class citi-
zens in the Grid just like the computational jobs. They
will be queued, scheduled, monitored, managed, and even
check-pointed. More importantly, it will be made sure that
they complete successfully and without any human interac-
tion. We also believe that data placement jobs should be
treated differently from computational jobs, since they may
have different semantics and different characteristics. For
this purpose, we have developed Stork, a scheduler for data
placement activities in the Grid.

1. Introduction

As the Grid [10] evolves, the data requirements of scien-
tific applications increase drastically. Just a couple of years
ago, the data requirements for an average scientific appli-
cation were measured in Terabytes, whereas today we use
Petabytes to measure them. Moreover, these data require-
ments continue to increase rapidly every year. A good ex-
ample for this is the Compact Muon Solenoid (CMS) [5]
project, a high energy physics project participating in the
Grid Physics Network (GriPhyN). According to the Particle
Physics Data Grid (PPDG) deliverables to CMS, the data
volume of CMS, which is currently a couple of Terabytes
per year, is expected to subsequently increase rapidly, so
that the accumulated data volume will reach 1 Exabyte (1
million Terabytes) by around 2015 [19]. This is the data vol-

ume required by only one application, and there are many
other data intensive applications from other projects with
very similar data requirements, ranging from genomics to
biomedical, and from metallurgy to cosmology.

The problem is not only the huge I/O needs of these data
intensive applications, but also the number of users who will
access the same datasets. For each of the projects, num-
ber of people who will be accessing the datasets range from
100s to 1000s. Furthermore, these users are not located at
a single site, rather they are distributed all across the coun-
try, even the globe. So, there is a predominant necessity to
move huge amounts of data around wide area networks to
complete the computation cycle, which brings with it the
problem of efficient and reliable data placement. Data need
to be located, moved, staged, replicated, and cached; stor-
age should be allocated and de-allocated for the data when-
ever necessary; and everything should be cleaned up when
the user is done with the data.

Just as compute resources and network resources need to
be carefully scheduled and managed, the scheduling of data
placement activities all across the Grid is crucial, since the
access to data has the potential to become the main bottle-
neck for data intensive applications. This is especially the
case when most of the data is stored on tape storage sys-
tems, which slows down access to data even further due to
the mechanical nature of these systems.

Currently, data placement activities in the Grid are per-
formed either manually or by simple scripts. We can say
that data placement activities are regarded as second class
citizens of the computation-dominated Grid world. Our
goal is to make data placement activities first class citizens
in the Grid just like the computational jobs. They need to be
queued, scheduled, monitored, managed, and even check-
pointed.

We also believe that data placement jobs should be
treated differently from computational jobs, since they may
have different semantics and different characteristics. Ex-
isting computational job schedulers do not understand the
semantics of data transfers well. For example, if the trans-
fer of a large file fails, we may not want to simply restart the



job and re-transfer the whole file. Rather, we may prefer to
transfer only the remaining part of the file. Similarly, if a
transfer using one protocol fails, we may want to try other
protocols supported by the source and destination hosts to
perform the transfer. A traditional computational job sched-
uler may not be able to handle these cases. For this purpose,
data placement jobs and computational jobs should be dif-
ferentiated. Data placement jobs should be submitted to a
scheduler capable of scheduling and managing data place-
ment jobs, and computational jobs should be submitted to
a scheduler capable of scheduling and managing compu-
tational jobs. This will also help in separating computa-
tional and data placement jobs from each other and will give
the users the ability to perform them asynchronously. For
this purpose, we have developed Stork, a scheduler for data
placement activities in the Grid.

2. Grid Data Placement Challenges

The Grid provides researchers with enourmous re-
sources, but it also brings some challenges with it. In or-
der to utilize Grid resources efficiently, researchers have to
overcome these challenges first. Some of the data place-
ment related challenges we are trying to solve with this
work are below.

Heterogeneous Resources. The Grid is a heterogeneous
environment in which many different storage systems, dif-
ferent data transfer middleware and protocols coexist. And
it is a fundamental problem that the data required by an ap-
plication might be stored in heterogeneous repositories. It is
not an easy task to interact with all possible different storage
systems to access the data. So there should be a negotiating
system through which you can access all different kinds of
storage systems, and also you can make use of all different
underlying middleware and file transfer protocols.

Hiding Failures from Applications. The Grid brings
failed network connections, performance variations during
transfers, crashed clients, servers and storage systems with
it. But generally the applications are not prepared to these
kind of problems. Most of the applications assume perfect
computational environments like failure-free network and
storage devices, unlimited storage, availability of the data
when the computation starts, and low latency. We cannot
expect every application to consider all possible failures and
performance variations in the system, and be prepared for
them. Instead, we should be able to hide these from the
application by a mediating system.

Different Job Requirements. Each job may have differ-
ent policies and different priorities. Scheduling should be
done according to the needs of each individual job. Global
scheduling decisions should be able to be tailored accord-
ing to the individual requirements of each job. Using only
global policies may not be affective and efficient enough.

The job description language used should be strong and
flexible enough to support job level policies. And the job
scheduler should be able to support and enforce these poli-
cies.

Overloading Limited Resources. The network and
storage resources that an application has access to can be
limited, and therefore they should be used efficiently. A
common problem in distributed computing environments is
that when all jobs submitted to remote sites start execution
at the same time, they all start pulling data from their home
storage systems (stage-in) concurrently. This can overload
both network resources and the local disks of remote exe-
cution sites. It may also bring a load to the home storage
systems from where the data is pulled.

One approach would be to pre-allocate both network and
storage resources before using them. This approach works
fine as long as the pre-allocation is supported by the re-
sources being used, and also if the user knows when and
how long the resources will be used by the application be-
forehand.

A more general solution would be to control the total
number of transfers happening anytime between any given
two sites. Most job schedulers can control the total number
of jobs being submitted and executed at any given time, but
this solution is not sufficient always and it is not the best
solution in most cases either. The reason is that it does not
do any overlapping of CPU and I/O, and causes the CPU
to wait while I/O is being performed. Moreover, the prob-
lem gets more complex when all jobs complete and try to
move their output data back to their home storage systems
(stage-out). In this case stage-ins and stage-outs of different
jobs may interfere, especially overloading the network re-
sources more. An intelligent scheduling mechanism should
be developed to control the number of stage-in and stage-
outs from and to any specific storage systems anytime, and
meanwhile do not cause any waste in CPU time.

3. Related Work

Visualization scientists at Los Alamos National Labora-
tory (LANL) found a solution for data placement by dump-
ing data to tapes and sending them to Sandia National Lab-
oratory (SNL) via Federal Express, because this was faster
than electronically transmitting them via TCP over the 155
Mbps(OC-3) WAN backbone [8].

The Reliable File Transfer Service(RFT) [17] allows
byte streams to be transferred in a reliable manner. RFT can
handle wide variety of problems like dropped connections,
machine reboots, and temporary network outages automati-
cally via retrying. RFT is built on top of GridFTP [1], which
is a secure and reliable data transfer protocol especially de-
veloped for high-bandwidth wide-area networks.

2



The Lightweight Data Replicator (LDR) [14] can repli-
cate data sets to the member sites of a Virtual Organiza-
tion or DataGrid. It was primarily developed for replicat-
ing LIGO [15] data, and it makes use of Globus [11] tools
to transfer data. Its goal is to use the minimum collection
of components necessary for fast and secure replication of
data. Both RFT and LDR work only with a single data trans-
port protocol, which is GridFTP.

There is ongoing effort to provide a unified interface
to different storage systems by building Storage Resource
Managers (SRMs) [22] on top of them. Currently, a cou-
ple of data storage systems, such as HPSS [21], Jasmin [3]
and Enstore [9], support SRMs on top of them. SRMs can
also manage distributed caches using “pinning of files”. The
SDSC Storage Resource Broker (SRB) [2] aims to provide
a uniform interface for connecting to heterogeneous data
resources and accessing replicated data sets. SRB uses a
Metadata Catalog (MCAT) to provide a way to access data
sets and resources based on their attributes rather than their
names or physical locations.

Thain et. al. propose the Ethernet approach [23] to Grid
Computing, in which they introduce a simple scripting lan-
guage which can handle failures in a manner similar to ex-
ceptions in some languages. The Ethernet approach is not
aware of the semantics of the jobs it is running, its duty is
retrying any given job for a number of times in a fault toler-
ant manner. Kangaroo [24] tries to achieve high throughput
by making opportunistic use of disk and network resources.

4. Stork Solutions to Grid Data Placement
Problems

Stork provides solutions for many of the data placement
problems encountered in the Grid environment.

4.1. Interaction with Higher Level Planners

Most of the applications in Grid require moving the input
data for the job from a remote site to the execution site,
executing the job, and then moving the output data from
execution site to the same or another remote site. If the
application does not want to take any risk of getting out of
disk space at the execution site, it may also want to allocate
space before transferring the input data there, and release
the space after it moves out the output data from there.

We regard all of these these computational and data
placement steps as real jobs and represent them as nodes
in a Directed Acyclic Graph (DAG). The dependencies be-
tween them are represented as directed arcs, as shown in
Figure 1.

Stork can interact with higher level planners such as the
Directed Acyclic Graph Manager (DAGMan) [6]. This al-
lows the users to be able to schedule both CPU resources

Figure 1. Five Step Plan. Computation at a remote
site with input and output data requirements can be
achieved with a five step plan, which is represented
as a six node DAG.

and storage resources together. We made some enhance-
ments to DAGMan, so that it can differentiate between com-
putational jobs and data placement jobs. It can then submit
computational jobs to a computational job scheduler, such
as Condor [16] or Condor-G [12], and the data placement
jobs to Stork. Figure 2 shows a sample DAG specification
file with the enhancement of data placement nodes, and how
this DAG is handled by DAGMan.

In this way, it can be made sure that an input file required
for a computation arrives to a storage device close to the ex-
ecution site before actually that computation starts execut-
ing on that site. Similarly, the output files can be removed to
a remote storage system as soon as the computation is com-
pleted. No storage device or CPU is occupied more than it
is needed, and jobs do not wait idle for their input data to
become available.

4.2. Interaction with Heterogeneous Resources

Stork is completely modular and can be extended easily.
It is very straightforward to add support to Stork for your
favorite storage system, data transport protocol, or middle-
ware. This is a very crucial feature in a system designed
to work in a heterogeneous Grid environment. The users or
applications may not expect all storage systems to support
the same interfaces to talk to each other. And we cannot ex-
pect all applications talking to all different kinds of storage
systems, protocols, and middleware. There needs to be a ne-
gotiating system between them which can interact to those
systems easily and even translate different protocols to each
other. Stork has been developed to be capable of this. The

3



Figure 2. Interaction with Higher Level Plan-
ners. In this prototype model, Stork interacts with a
higher level planner: DAGMan. A DAG specification
file consisting of both computational and data place-
ment jobs is submitted to DAGMan. DAGMan then
submits computational jobs to Condor/Condor-G, and
data placement jobs to Stork.

modularity of Stork allows users to insert a plug-in to sup-
port their favorite storage system, protocol, or middleware
easily.

Stork already has support for several different storage
systems, data transport protocols, and middleware. Users
can use them immediately without any extra work. Stork
can interact currently with data transfer protocols such as
FTP [18], GridFTP, HTTP and DiskRouter [13]; data stor-
age systems such as SRB, UniTree [4], and NeST; and data
management middleware such as SRM.

Stork maintains a library of pluggable “data placement”
modules. These modules get executed by data placement
job requests coming to Stork. They can perform inter-
protocol translations either using a memory buffer or third-
party transfers whenever available. In order to transfer data
between systems for which direct inter-protocol translation
is not supported, two consecutive Stork jobs can be used in-
stead. The first Stork job performs transfer from the source
storage system to the local disk cache of Stork, and the
second Stork job performs the transfer from the local disk
cache of Stork to the destination storage system.

4.3. Flexible Job Representation and Multilevel Pol-
icy Support

Stork uses the ClassAd [20] job description language to
represent the data placement jobs. The ClassAd language
provides a very flexible and extensible data model that can

Figure 3. Job representation in Stork. Three
sample data placement (DaP) requests are shown:
first one to allocate space, second one to transfer a
file to the reserved space, and third one to de-allocate
the reserved space.

be used to represent arbitrary services and constraints.
Figure 3 shows three sample data placement (DaP) re-

quests. First request is to allocate 100 MB of disk space
for 2 hours on a NeST server. Second request is to trans-
fer a file from an SRB server to the reserved space on the
NeST server. The third request is to de-allocate previously
reserved space. In addition to the “reserve”, “transfer”, and
“release”, there are also other data placement job types such
as “locate” to find where the data is actually located and
“stage” to move the data from a tertiary storage to a sec-
ondary storage next to it in order to decrease data access
time during actual transfers.

Stork enables users to specify job level policies as well as
global ones. Global policies apply to all jobs scheduled by
the same Stork server. Users can overwrite them by spec-
ifying job level policies in job description ClassAds. The
example below shows how to overwrite global policies at
the job level.

[
dap_type = ‘‘transfer’’;
...
...
max_retry = 10;
restart_in = ‘‘2 hours’’;

]

In this particular example, the user specifies that this par-
ticular job should be retried up to 10 times in case of fail-
ure, and if the transfer does not get completed in 2 hours, it
should be killed and restarted.

4



4.4. Run-time Adaptation

Stork can decide which data transfer protocol to use for
each corresponding transfer dynamically and automatically
at the run-time. Before performing each transfer, Stork
makes a quick check to identify which protocols are avail-
able for both the source and destination hosts involved in
the transfer. Stork first checks its own host-protocol library
to see whether all of the hosts involved the transfer are al-
ready in the library or not. If not, Stork tries to connect
to those particular hosts using different data transfer proto-
cols, to determine the availability of each specific protocol
on that particular host. Then Stork creates the list of proto-
cols available on each host, and stores these lists as a library:

[
host_name = "quest2.ncsa.uiuc.edu";
supported_protocols = "diskrouter, gridftp, ftp";

]
[
host_name = "nostos.cs.wisc.edu";
supported_protocols = "gridftp, ftp, http";

]

If the protocols specified in the source and destination
URLs of the request fail to perform the transfer, Stork will
start trying the protocols in its host-protocol library to carry
out the transfer. The users also have the option not to spec-
ify any particular protocols in the request, letting Stork to
decide which protocol to use at run-time:

[
dap_type = "transfer";
src_url = "any://slic04.sdsc.edu/tmp/foo.dat";
dest_url = "any://quest2.ncsa.uiuc.edu/tmp/foo.dat";

]

In the above example, Stork will select any of the avail-
able protocols on both source and destination hosts to per-
form the transfer. So, the users do not need to care about
which hosts support which protocols. They just send a re-
quest to Stork to transfer a file from one host to another, and
Stork will take care of deciding which protocol to use.

The users can also provide their preferred list of alterna-
tive protocols for any transfer. In this case, the protocols
in this list will be used instead of the protocols in the host-
protocol library of Stork:

[
dap_type = "transfer";
src_url = "drouter://slic04.sdsc.edu/tmp/foo.dat";
dest_url = "drouter://quest2.ncsa.uiuc.edu/tmp/foo.dat";
alt_protocols = "nest-nest, gsiftp-gsiftp";

]

In this example, the user asks Stork to perform the a
transfer from slic04.sdsc.edu to quest2.ncsa.uiuc.edu using
the DiskRouter protocol primarily. The user also instructs
Stork to use any of the NeST or GridFTP protocols in case
the DiskRouter protocol does not work. Stork will try to
perform the transfer using the DiskRouter protocol first. In

case of a failure, it will switch to the alternative protocols
and will try to complete the transfer successfully. If the pri-
mary protocol becomes available again, Stork will switch
to it again. So, whichever protocol available will be used to
successfully complete user’s request.

4.5. Failure Recovery and Efficient Resource Uti-
lization

Stork hides any kind of network, storage system, mid-
dleware, or software failures from user applications. It has
a “retry” mechanism, which can retry any failing data place-
ment job any given number of times before returning a fail-
ure. It also has a “kill and restart” mechanism, which allows
users to specify a “maximum allowable run time” for their
data placement jobs. When a job execution time exceeds
this specified time, it will be killed by Stork automatically
end restarted. This feature overcomes the bugs in some sys-
tems, which cause the transfers to hang forever and never
return. This can be repeated any number of times, again
specified by the user.

Stork can control the number of concurrent requests
coming to any storage system it has access to, and makes
sure that neither that storage system nor the network link
to that storage system get overloaded. It can also perform
space allocation and deallocations to make sure that the re-
quired storage space is available on the corresponding stor-
age system. The space reservations are supported by Stork
as long as the corresponding storage systems have support
for it.

5. Case Studies

We will now show the applicability and contributions of
Stork with two case studies. The first case study shows us-
ing Stork to create a data-pipeline between two heteroge-
neous storage systems. In this case, Stork is used to trans-
fer data between two mass storage systems which do not
have a common interface. This is done fully automatically
and all failures during the course of the transfers are recov-
ered without any human interaction. The second case study
shows how Stork can be used for run-time adaptation of data
transfers. If data transfer with one particular protocol fails,
Stork uses other protocols available to successfully com-
plete the transfer.

5.1. Building Data-pipelines

NCSA scientists wanted to transfer the Digital Palomar
Sky Survey (DPOSS) [7] image data residing on SRB [2]
mass storage system at SDSC in California to their UniTree
mass storage system at NCSA in Illinois. The total data
size was around 3 TB (2611 files of 1.1 GB each). Since

5



Figure 4. Transfer in 5 Steps. Nodes represent-
ing the five steps of a single transfer are combined
into a giant DAG to perform all transfers in the SRB -
UniTree data-pipeline. k is the concurrency level.

there was no direct interface between SRB and UniTree at
the time of the experiment, the only way to perform the data
transfer between these two storage systems was to build a
data pipeline. For this purpose, we have designed a data-
pipeline using Stork.

In this pipeline, we set up two cache nodes between the
source and destination storage systems. The first cache node
(slic04.sdsc.edu) was at the SDSC site very close to the SRB
server, and the second cache node (quest2.ncsa.uiuc.edu)
was at the NCSA site near the UniTree server. This pipeline
configuration allowed us to transfer data first from the SRB
server to the SDSC cache node using the underlying proto-
col of SRB, then from the SDSC cache node to the NCSA
cache node using third-party DiskRouter transfers, and fi-
nally from the NCSA cache node to the UniTree server us-
ing the underlying protocol of UniTree.

The NCSA cache node had only 12 GB of local disk
space for our use and we could store only 10 image files
in that space. This implied that whenever we were done
with a file at the cache node, we had to remove it from there
to create space for the transfer of another file. Including
the removal step of the file, the end-to-end transfer of each
file consisted of five basic steps, all of which we considered
as real jobs to be submitted either to the Condor or Stork
scheduling systems. All of these steps are represented as
nodes in a DAG with arcs representing the dependencies
between the steps. Then all of these five node DAGs were
joined together to form a giant DAG as shown in Figure 4.
The whole process was managed by DAGMan.

The SRB server, the UniTree server, and the SDSC cache
node had gigabit ethernet(1000 Mb/s) interface cards in-
stalled on them. The NCSA cache node had a fast ether-
net(100 Mb/s) interface card installed on it. We found the
bottleneck link to be the fast ethernet interface card on the

Figure 5. Automated Failure Recovery in case
of Network, Cache Node and Software Prob-
lems. The transfers recovered automatically again
despite almost all possible failures occurring one af-
ter the other: UW CS network goes down, SDSC
cache node goes down, and finally DiskRouter stops
responding.

NCSA cache node. We got an end-to-end transfer rate of
47.6 Mb/s from the SRB server to the UniTree server.

In this study, we have shown that we can successfully
build a data-pipeline between two heterogeneous mass-
storage systems, SRB and UniTree. Moreover, we have
fully automated the operation of the pipeline and success-
fully transferred around 3 Terabytes of DPOSS data from
the SRB server to the UniTree server without any human
interaction.

During the transfers between SRB and UniTree, we had
a wide variety of failures. At times either the source or des-
tination mass-storage systems stopped accepting new trans-
fers, due to either software failures or scheduled mainte-
nance activity. We also had wide-area network outages,
and software upgrades. Once in a while, a third-party
DiskRouter transfer would hang. All of these failures were
recovered automatically and the transfers were completed
successfully without any human interaction.

Figure 5 shows multiple failures occurring during the

6



Figure 6. Dynamic Protocol Selection. The
DiskRouter server running on the SDSC machine gets
killed twice at points (1) and (3), and it gets restarted
at points (2) and (4). In both cases, Stork employed
next available protocol (GridFTP in this case) to com-
plete the transfers.

course of the transfers. First the SDSC cache machine
was rebooted and then there was a UW CS network out-
age which disconnected the management site and the ex-
ecution sites for a couple of hours. The pipeline auto-
matically recovered from these two failures. Finally the
DiskRouter server stopped responding for a couple of hours.
The DiskRouter problem was partially caused by a network
reconfiguration at StarLight hosting the DiskRouter server.
Here again, our automatic failure recovery worked fine.

5.2. Run-time Adaptation of Data Transfers

We submitted 500 data transfer requests to the
Stork server running at University of Wisconsin (sky-
walker.cs.wisc.edu). Each request consisted of trans-
fer of a 1.1GB image file (total 550GB) from SDSC
(slic04.sdsc.edu) to NCSA (quest2.ncsa.uiuc.edu) using the
DiskRouter protocol. There was a DiskRouter server in-
stalled at Starlight (ncdm13.sl.startap.net) which was re-
sponsible for routing DiskRouter transfers. There were
also GridFTP servers running on both SDSC and NCSA
sites, which enabled us to use third-party GridFTP transfers
whenever necessary.

At the beginning of the experiment, both DiskRouter and
GridFTP services were available. Stork started transferring
files from SDSC to NCSA using the DiskRouter protocol as
directed by the user. After a while, we killed the DiskRouter
server running at Starlight intentionally. Stork immediately
switched the protocols and continued the transfers using

GridFTP without any interruption. Switching to GridFTP
caused a decrease in the performance of the transfers, as
shown in Figure 6. The reasons of this decrease in perfor-
mance is because of the fact that GridFTP does not perform
auto-tuning whereas DiskRouter does. In this experiment,
we set the number of parallel streams for GridFTP transfers
to 10, but we did not perform any tuning of disk I/O block
size or TCP buffer size. DiskRouter performs auto-tuning
for the network parameters including the number of TCP-
streams in order to fully utilize the available bandwidth.
DiskRouter can also use sophisticated routing to achieve
better performance.

After letting Stork use the alternative protocol (in this
case GridFTP) to perform the transfers for a while, we
restarted the DiskRouter server at the SDSC site. This time,
Stork switched back to using DiskRouter for the transfers,
since it was the preferred protocol of the user. Switching
back to the faster protocol resulted in an increase in the per-
formance. We repeated this a couple of more times, and
observed that the system behaved in the same way every
time.

This experiment shows that with alternate protocol fall-
over capability, grid data-placement jobs can make use of
the new high performance protocols while they work and
switch to more robust lower performance protocol when the
high performance one fails.

6. Future Work

We are planning to enhance the interaction between
Stork and the higher level planners and computational
schedulers more. This will result in co-scheduling of com-
putational and data resources and will allow users to use
both resources more efficiently.

Currently, the scheduling of data placement activities us-
ing Stork are performed at the file level. The users can move
around only complete files. We are planning to add support
for data level or block level scheduling. In this way, the
users will be able to schedule movements of partial files, or
even any specific blocks of a file.

We are planning to add more intelligence and adaptation
to transfers. Different data transfer protocols may have dif-
ferent optimum concurrency levels for any two source and
destination nodes. Stork will be able to decide the concur-
rency level of the transfers it is performing, taking into con-
sideration the source and destination nodes of the transfer,
the link it using, and more importantly, the protocol with
which it is performing the transfers. In case of availabil-
ity of multiple protocols to transfer data between different
nodes, Stork will be able to choose the on with the best
performance, or the most reliable one according to the user
preferences.

7



Stork will be able to decide through which path, ide-
ally the optimum one, to transfer data by an enhanced in-
tegration with the DiskRouter tool. It will be able to se-
lect nodes on which DiskRouters should be deployed, start
DiskRouters on these nodes, and transfer the data through
them by optimizing both the path and also the network uti-
lization.

Another enhancement will be done with adding check-
pointing support to data placement jobs. Whenever a trans-
fer fails, it will not be started from scratch, but rather only
the remaining parts of the file will be transfered.

7. Conclusion

We have introduced a specialized scheduler for data
placement activities in Grid. Data placement efforts which
has been done either manually or by using simple scripts
are now regarded as first class citizens just like the compu-
tational jobs. They can be queued, scheduled, monitored
and managed in a fault tolerant manner. We have showed
the current challences with the data placement efforts in the
Grid, and how Stork can provide solutions to them. We
introduced a framework in which computational and data
placement jobs are treated and scheduled differently by their
corresponding schedulers, where the management and syn-
cronization of both type of jobs is performed by higher level
planners.

With two case studies, we have shown the applicabil-
ity and contributions of Stork. Stork can be used to trans-
fer data between heterogeneous systems fully automatically.
It can recover from storage system, network and software
failures without any human interaction. It can dynamically
adapt data placement jobs to the environment at the execu-
tion time. We have shown that it generates better perfor-
mance results by dynamically switching to alternative pro-
tocols in case of a failure.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. T.
ke. Secure, efficient data transport and replica management
for high-pe rformance data-intensive computing. In IEEE
Mass Storage Conference, San Diego, CA, April 2001.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In Proceedings of CASCON,
Toronto, Canada, 1998.

[3] I. Bird, B. Hess, and A. Kowalski. Building the mass stor-
age system at Jefferson Lab. In Proceedings of 18th IEEE
Symposium on Mass Storage Systems, San Diego, Califor-
nia, April 2001.

[4] M. Butler, R. Pennington, and J. A. Terstriep. Mass Storage
at NCSA: SGI DMF and HP UniTree. In Proceedings of
40th Cray User Group Conference, 1998.

[5] CMS. The Compact Muon Solenoid Project.
http://cmsinfo.cern.ch/.

[6] Condor. The Directed Acyclic Graph Manager.
http://www.cs.wisc.edu/condor/dagman/, 2003.

[7] S. G. Djorgovski, R. R. Gal, S. C. Odewahn, R. R. de Car-
valho, R. Brunner, G. Longo, and R. Scaramella. The Palo-
mar Digital Sky Survey (DPOSS). Wide Field Surveys in
Cosmology, 1988.

[8] W. Feng. High Performance Transport Protocols. Los
Alamos National Laboratory, 2003.

[9] FNAL. Enstore mass storage system.
http://www.fnal.gov/docs/products/enstore/.

[10] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal of Supercomputing Applications, 2001.

[11] I. Foster and C. Kesselmann. Globus: A Toolkit-Based Grid
Architecture. In The Grid: Blueprints for a New Computing
Infrastructure, pages 259–278, Morgan Kaufmann, 1999.

[12] J. Frey, T. Tannenbaum, I. Foster, and S. Tuecke. Condor-G:
A Computation Management Agent for Multi-Institutional
Grids. In Proceedings of the Tenth IEEE Symposium on
High Performance Distributed Computing, San Francisco,
California, August 2001.

[13] G. Kola and M. Livny. Diskrouter: A flexible infrastructure
for high performance large scale data transfers. Technical
Report CS-TR-2003-1484, University of Wisconsin, 2003.

[14] S. Koranda and B. Moe. Lightweight Data Replica-
tor. http://www.lsc-group.phys.uwm.edu/lscdatagrid/LDR/
overview.html, 2003.

[15] LIGO. Laser Interferometer Gravitational Wave Observa-
tory. http://www.ligo.caltech.edu/, 2003.

[16] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A
Hunter of Idle Workstations. In Proceedings of the 8th In-
ternational Conference of Distributed Computing Systems,
pages 104–111, 1988.

[17] R. Maddurri and B. Allcock. Reliable File Transfer Service.
http://www-unix.mcs.anl.gov/ madduri/main.html, 2003.

[18] J. Postel. FTP: File Transfer Protocol Specification. RFC-
765, 1980.

[19] PPDG. PPDG Deliverables to CMS.
http://www.ppdg.net/archives/ppdg/2001/doc00017.doc.

[20] R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed resource management for high throughput com-
puting. In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing
(HPDC7), Chicago, Illinois, July 1998.

[21] SDSC. High Performance Storage System (HPSS).
http://www.sdsc.edu/hpss/.

[22] A. Shishani, A. Sim, and J. Gu. Storage Resource Managers:
Middleware Components for Grid Storage. In Nineteenth
IEEE Symposium on Mass Storage Systems, 2002.

[23] D. Thain, , and M. Livny. The ethernet approach to grid
computing. In Proceedings of the Twelfth IEEE Sympo-
sium on High Performance Distributed Computing, Seattle,
Washington, June 2003.

[24] D. Thain, J. Basney, S. Son, and M. Livny. The kangaroo ap-
proach to data movement on the grid. In Proceedings of the
Tenth IEEE Symposium on High Performance Distributed
Computing, San Francisco, California, August 2001.

8


